Suppr超能文献

使用机器学习评估代谢指标和评分对心血管事件的影响。

Evaluating the impact of metabolic indicators and scores on cardiovascular events using machine learning.

作者信息

Li Guanmou, Luo Cheng, Ge Teng, He Kunyang, Zhang Miao, Hu Jinlin, Zheng Baoshi, Zou Rongjun, Fan Xiaoping

机构信息

State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.

Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou, 510120, Guangdong, China.

出版信息

Diabetol Metab Syndr. 2025 May 30;17(1):180. doi: 10.1186/s13098-025-01753-1.

Abstract

Cardiovascular diseases such as coronary artery disease, myocardial infarction, and heart failure impact millions of people annually globally and are a major cause of disease and death. This study explores the predictive capabilities of novel metabolic indices (TyG, HOMA-IR, TG/HDL-C, and VAI) for major adverse cardiovascular events (MACE) and analyzes their relationships with diabetes and cardiovascular risks. Using data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2003 to 2018, we applied multiple machine learning algorithms to evaluate nine metabolic indicators including cholesterol levels, triglycerides, insulin, and waist circumference. Through cross-validation to validate model performance, the XGBoost algorithm demonstrated the most accurate performance in predicting cardiovascular outcomes, particularly for diseases like angina and heart failure. Additionally, SHAP value analysis confirmed the critical roles of waist circumference and METS-IR in predicting adverse cardiovascular events. Furthermore, we employed 100 machine learning algorithms to calculate the AUC values of metabolic indicators in predicting AP, CHD, HF, and MI, showing that METS-IR had the greatest contribution in these aspects. This research highlights the significance of metabolic indices in stratifying cardiovascular risks and presents potential avenues for targeted preventive strategies.

摘要

冠状动脉疾病、心肌梗死和心力衰竭等心血管疾病每年在全球影响数百万人,是疾病和死亡的主要原因。本研究探讨了新型代谢指标(TyG、HOMA-IR、TG/HDL-C和VAI)对主要不良心血管事件(MACE)的预测能力,并分析了它们与糖尿病和心血管风险的关系。利用2003年至2018年美国国家健康与营养检查调查(NHANES)的数据,我们应用多种机器学习算法来评估包括胆固醇水平、甘油三酯、胰岛素和腰围在内的九种代谢指标。通过交叉验证来验证模型性能,XGBoost算法在预测心血管结局方面表现出最准确的性能,尤其是对于心绞痛和心力衰竭等疾病。此外,SHAP值分析证实了腰围和METS-IR在预测不良心血管事件中的关键作用。此外,我们采用100种机器学习算法来计算代谢指标在预测动脉粥样硬化性心血管疾病(AP)、冠心病(CHD)、心力衰竭(HF)和心肌梗死(MI)方面的AUC值,表明METS-IR在这些方面的贡献最大。本研究强调了代谢指标在分层心血管风险方面的重要性,并为有针对性的预防策略提供了潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e719/12123715/a79b65ac650a/13098_2025_1753_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验