Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904 Israel.
Prog Neurobiol. 2022 Sep;216:102312. doi: 10.1016/j.pneurobio.2022.102312. Epub 2022 Jun 24.
Measurements of the time elapsed during synaptic transmission has shown that synaptic vesicle (SV) fusion lags behind Ca-influx by approximately 60 microseconds (µsec). The conventional model cannot explain this extreme rapidity of the release event. Synaptic transmission occurs at the active zone (AZ), which comprises of two pools of SV, non-releasable "tethered" vesicles, and a readily-releasable pool of channel-associated Ca-primed vesicles, "RRP". A recent TIRF study at cerebellar-mossy fiber-terminal, showed that subsequent to an action potential, newly "tethered" vesicles, became fusion-competent in a Ca-dependent manner, 300-400 ms after tethering, but were not fused. This time resolution may correspond to priming of tethered vesicles through Ca-binding to Syt1/Munc13-1/complexin. It confirms that Ca-priming and Ca-influx-independent fusion, are two distinct events. Notably, we have established that Ca channel signals evoked-release in an ion flux-independent manner, demonstrated by Ca-impermeable channel, or by substitution of Ca with channel -impermeable La. Thus, conformational changes in a channel coupled to RRP appear to directly activate the release machinery and account for a µsec Ca-influx-independent vesicle fusion. Rapid vesicle fusion driven by non-ionotropic channel signaling strengthens a conformational-coupling mechanism of synaptic transmission, and contributes to better understanding of neuronal communication vital for brain function.
测量突触传递过程中时间的流逝表明,突触小泡 (SV) 的融合滞后于 Ca 流入约 60 微秒 (µsec)。传统模型无法解释这种释放事件的极端快速性。突触传递发生在活性区 (AZ),它包含两个 SV 池,不可释放的“束缚”囊泡,以及一个易于释放的通道相关 Ca 引发的囊泡“RRP”池。最近在小脑苔藓纤维末端的 TIRF 研究表明,继动作电位之后,新的“束缚”囊泡以 Ca 依赖性方式在束缚后 300-400ms 变得融合有能力,但未融合。这种时间分辨率可能对应于通过 Ca 结合 Syt1/Munc13-1/complexin 对束缚囊泡的引发。它证实了 Ca 引发和 Ca 流入无关的融合是两个不同的事件。值得注意的是,我们已经确定 Ca 通道信号以离子流独立的方式引发释放,这可以通过不渗透 Ca 的通道或用不渗透通道的 La 替代 Ca 来证明。因此,与 RRP 偶联的通道构象变化似乎直接激活释放机制,并解释了µsec Ca 流入无关的囊泡融合。由非离子通道信号驱动的快速囊泡融合加强了突触传递的构象偶联机制,并有助于更好地理解对大脑功能至关重要的神经元通讯。