Faculty of Medicine and Health Sciences, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada.
Faculty of Engineering, Department of Electrical and Computing Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.
Scand J Trauma Resusc Emerg Med. 2022 Jun 27;30(1):42. doi: 10.1186/s13049-022-01031-3.
Alpine skiing rescues are challenging because of the mountainous environment and risks of cervical spine motion (CSM) induced during victims' extrications (EXs) and downhill evacuations (DEs). The benefits of applying a cervical collar (CC) over manual in-line stabilization without CC (MILS) in terms of spinal motion restriction during simulated alpine rescues are undocumented. Our hypothesis was that CSM recorded using MILS alone is non-inferior to CSM recorded with a CC according to a 10 degrees margin.
A total of 32 alpine extrications and 4 downhill evacuations on different slope conditions were performed using a high fidelity mannequin designed with a motion sensors instrumented cervical spine. The primary outcome was the peak extrication 3D excursion angle (Peak 3D θ) of the mannequin's head. The secondary objectives were to describe the time to extrication completion (tEX) and to highlight which extrication manipulation is more likely to induce CSM.
The median Peak 3D θ recorded during flat terrain extrications using CC was 10.77° (95% CI 7.31°-16.45°) compared to 13.06° (95% CI 10.20°-30.36°) using MILS, and 16.09° (95% CI 9.07°-37.43°) for CC versus 16.65° (95% CI 13.80°-23.40°) using MILS on a steep slope. Peak 3D θ with CC or using MILS during extrications were equivalent according to a 10 degrees non-inferiority hypothesis testing (p < 0.05). Time to extrication completion (tEX) was significantly reduced using MILS without CC on a flat terrain with a median duration of 237,3 s (95% CI 197.8 s, 272.2 s) compared to 358.7 s (95% CI 324.1 s, 472.4 s). During downhill evacuations, CSM with and without CC across all terrain conditions were negligible (< 5°). When CC is used; its installation manipulation induces the highest CSM. When EXs are done using MILS without CC, the logroll initiation is the manipulation inducing the highest risk of CSM.
For experienced ski patrollers, the biomechanical benefits of spinal motion restriction provided by CC over MILS during alpine skiing rescues appear to be marginal and CC use negatively affects rescue time.
由于山区环境和受害者在救援过程中(EXs)和下坡疏散(DEs)期间颈椎运动(CSM)的风险,高山滑雪救援具有挑战性。在模拟高山救援中,应用颈托(CC)限制脊柱运动优于无颈托的手动直线稳定(MILS),但这方面的益处尚未得到记录。我们的假设是,根据 10 度的裕度,仅使用 MILS 记录的 CSM 与使用 CC 记录的 CSM 相比是非劣效的。
使用设计带有运动传感器的颈椎的高保真人体模型进行了 32 次高山救援和 4 次下坡疏散,这些救援和疏散分别在不同的斜坡条件下进行。主要结局是人体模型头部的救援 3D 最大偏移角度(Peak 3D θ)。次要目标是描述救援完成时间(tEX),并突出哪种救援操作更有可能引起 CSM。
在平坦地形的救援中,使用 CC 记录的中位数 Peak 3D θ为 10.77°(95%CI 7.31°-16.45°),而使用 MILS 记录的中位数为 13.06°(95%CI 10.20°-30.36°),在陡峭的斜坡上,使用 CC 记录的中位数为 16.09°(95%CI 9.07°-37.43°),而使用 MILS 记录的中位数为 16.65°(95%CI 13.80°-23.40°)。根据 10 度非劣效性假设检验(p<0.05),使用 CC 或使用 MILS 进行救援时,Peak 3D θ 是等效的。在平坦地形上,不使用 CC 仅使用 MILS 进行救援时,救援完成时间(tEX)显著缩短,中位数为 237.3 s(95%CI 197.8 s,272.2 s),而使用 CC 时为 358.7 s(95%CI 324.1 s,472.4 s)。在整个下坡疏散过程中,无论是否使用 CC,CSM 都可以忽略不计(<5°)。当使用 CC 时,其安装操作会导致最高的 CSM。当使用无 CC 的 MILS 进行 EX 时,起始翻转操作是引起 CSM 风险最高的操作。
对于经验丰富的滑雪巡逻员来说,在高山滑雪救援中,与 MILS 相比,CC 对脊柱运动的限制提供的生物力学益处似乎微不足道,而且 CC 的使用会影响救援时间。