Suppr超能文献

使用深度神经网络和BERT模型从大量非结构化医疗咨询中自动识别症状

Automatic symptoms identification from a massive volume of unstructured medical consultations using deep neural and BERT models.

作者信息

Faris Hossam, Faris Mohammad, Habib Maria, Alomari Alaa

机构信息

King Abdullah II School for Information Technology, The University of Jordan, 11942, Jordan.

Research Centre for Information and Communications Technologies of the University of Granada (CITIC-UGR), University of Granada, Granada, Spain.

出版信息

Heliyon. 2022 Jun 10;8(6):e09683. doi: 10.1016/j.heliyon.2022.e09683. eCollection 2022 Jun.

Abstract

Automatic symptom identification plays a crucial role in assisting doctors during the diagnosis process in Telemedicine. In general, physicians spend considerable time on clinical documentation and symptom identification, which is unfeasible due to their full schedule. With text-based consultation services in telemedicine, the identification of symptoms from a user's consultation is a sophisticated process and time-consuming. Moreover, at Altibbi, which is an Arabic telemedicine platform and the context of this work, users consult doctors and describe their conditions in different Arabic dialects which makes the problem more complex and challenging. Therefore, in this work, an advanced deep learning approach is developed consultations with multi-dialects. The approach is formulated as a multi-label multi-class classification using features extracted based on AraBERT and fine-tuned on the bidirectional long short-term memory (BiLSTM) network. The Fine-tuning of BiLSTM relies on features engineered based on different variants of the bidirectional encoder representations from transformers (BERT). Evaluating the models based on precision, recall, and a customized hit rate showed a successful identification of symptoms from Arabic texts with promising accuracy. Hence, this paves the way toward deploying an automated symptom identification model in production at Altibbi which can help general practitioners in telemedicine in providing more efficient and accurate consultations.

摘要

自动症状识别在远程医疗的诊断过程中协助医生方面发挥着关键作用。一般来说,医生在临床记录和症状识别上花费大量时间,而由于他们日程安排满,这是不可行的。在远程医疗基于文本的咨询服务中,从用户咨询中识别症状是一个复杂且耗时的过程。此外,在阿尔蒂比(Altibbi)这个阿拉伯语远程医疗平台以及本文的工作背景下,用户用不同的阿拉伯方言咨询医生并描述他们的病情,这使得问题更加复杂且具有挑战性。因此,在这项工作中,开发了一种先进的深度学习方法来处理多方言咨询。该方法被制定为一种多标签多类分类,使用基于AraBERT提取并在双向长短期记忆(BiLSTM)网络上微调的特征。BiLSTM的微调依赖于基于来自变换器(BERT)的双向编码器表示的不同变体设计的特征。基于精确率、召回率和定制命中率评估模型,结果表明能够成功地从阿拉伯语文本中识别症状,准确率很可观。因此,这为在阿尔蒂比生产中部署自动症状识别模型铺平了道路,该模型可以帮助远程医疗中的全科医生提供更高效、准确的咨询服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf7a/9233221/8eb3446820e1/gr001.jpg

相似文献

1
Automatic symptoms identification from a massive volume of unstructured medical consultations using deep neural and BERT models.
Heliyon. 2022 Jun 10;8(6):e09683. doi: 10.1016/j.heliyon.2022.e09683. eCollection 2022 Jun.
2
DeBERTa-BiLSTM: A multi-label classification model of Arabic medical questions using pre-trained models and deep learning.
Comput Biol Med. 2024 Mar;170:107921. doi: 10.1016/j.compbiomed.2024.107921. Epub 2024 Jan 4.
7
Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records.
BMC Med Inform Decis Mak. 2022 Mar 23;22(1):72. doi: 10.1186/s12911-022-01810-z.
9
Emotion Analysis Based on Deep Learning With Application to Research on Development of Western Culture.
Front Psychol. 2022 Sep 13;13:911686. doi: 10.3389/fpsyg.2022.911686. eCollection 2022.
10
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model.
PeerJ Comput Sci. 2022 Jun 8;8:e1005. doi: 10.7717/peerj-cs.1005. eCollection 2022.

引用本文的文献

1
Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes.
J Pain Symptom Manage. 2024 Aug;68(2):190-198.e1. doi: 10.1016/j.jpainsymman.2024.05.015. Epub 2024 May 23.

本文引用的文献

1
A BERT model generates diagnostically relevant semantic embeddings from pathology synopses with active learning.
Commun Med (Lond). 2021 Jul 5;1:11. doi: 10.1038/s43856-021-00008-0. eCollection 2021.
2
A novel deep learning approach to extract Chinese clinical entities for lung cancer screening and staging.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):214. doi: 10.1186/s12911-021-01575-x.
3
Medical code prediction via capsule networks and ICD knowledge.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):55. doi: 10.1186/s12911-021-01426-9.
4
Novel MRI-Based CAD System for Early Detection of Thyroid Cancer Using Multi-Input CNN.
Sensors (Basel). 2021 Jun 4;21(11):3878. doi: 10.3390/s21113878.
6
Extracting Angina Symptoms from Clinical Notes Using Pre-Trained Transformer Architectures.
AMIA Annu Symp Proc. 2021 Jan 25;2020:412-421. eCollection 2020.
8
Extracting clinical terms from radiology reports with deep learning.
J Biomed Inform. 2021 Apr;116:103729. doi: 10.1016/j.jbi.2021.103729. Epub 2021 Mar 9.
10
ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation.
Sensors (Basel). 2021 Jan 3;21(1):268. doi: 10.3390/s21010268.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验