Faculty of Computer Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran.
School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK.
Sensors (Basel). 2021 Jan 3;21(1):268. doi: 10.3390/s21010268.
Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.
肺 CT 图像分割是许多应用程序的关键过程,例如肺癌检测。由于肺部结构中存在相似的图像密度、不同类型的扫描仪和扫描协议,因此它被认为是一个具有挑战性的问题。目前大多数半自动分割方法都依赖于人为因素,因此可能存在准确性不足的问题。这些方法的另一个缺点是假阳性率高。近年来,一些基于深度学习框架的方法已成功应用于医学图像分割。在现有的深度神经网络中,U-Net 在该领域取得了巨大的成功。在本文中,我们提出了一种深度神经网络架构,用于执行自动肺 CT 图像分割过程。在提出的方法中,对原始 CT 图像应用了几种广泛的预处理技术。然后,通过一些形态学操作和手动修改来提取这些图像的相应真值。最后,将所有准备好的图像及其相应的真实值输入到修改后的 U-Net 中,该 U-Net 的编码器被预训练的 ResNet-34 网络(称为 Res BCDU-Net)替换。在该架构中,我们使用 BConvLSTM(双向卷积长短期记忆)作为高级集成器模块,而不是简单的传统串联器。这是为了将相应收缩路径中提取的特征图合并到上卷积层的前一个扩展中。最后,使用密集连接卷积层用于收缩路径。我们在肺 CT 图像(LIDC-IDRI 数据库)上进行的广泛实验结果证实了该方法的有效性,其中达到了 97.31%的骰子系数指标。