Department of Cardiology, University Medical Centre Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands.
Europace. 2022 Oct 13;24(10):1645-1654. doi: 10.1093/europace/euac054.
While electrocardiogram (ECG) characteristics have been associated with life-threatening ventricular arrhythmias (LTVA) in dilated cardiomyopathy (DCM), they typically rely on human-derived parameters. Deep neural networks (DNNs) can discover complex ECG patterns, but the interpretation is hampered by their 'black-box' characteristics. We aimed to detect DCM patients at risk of LTVA using an inherently explainable DNN.
In this two-phase study, we first developed a variational autoencoder DNN on more than 1 million 12-lead median beat ECGs, compressing the ECG into 21 different factors (F): FactorECG. Next, we used two cohorts with a combined total of 695 DCM patients and entered these factors in a Cox regression for the composite LTVA outcome, which was defined as sudden cardiac arrest, spontaneous sustained ventricular tachycardia, or implantable cardioverter-defibrillator treated ventricular arrhythmia. Most patients were male (n = 442, 64%) with a median age of 54 years [interquartile range (IQR) 44-62], and median left ventricular ejection fraction of 30% (IQR 23-39). A total of 115 patients (16.5%) reached the study outcome. Factors F8 (prolonged PR-interval and P-wave duration, P < 0.005), F15 (reduced P-wave height, P = 0.04), F25 (increased right bundle branch delay, P = 0.02), F27 (P-wave axis P < 0.005), and F32 (reduced QRS-T voltages P = 0.03) were significantly associated with LTVA.
Inherently explainable DNNs can detect patients at risk of LTVA which is mainly driven by P-wave abnormalities.
虽然心电图(ECG)特征与扩张型心肌病(DCM)中的致命性室性心律失常(LTVA)有关,但它们通常依赖于人为参数。深度神经网络(DNN)可以发现复杂的 ECG 模式,但由于其“黑盒”特性,解释受到阻碍。我们旨在使用内在可解释的 DNN 检测有发生 LTVA 风险的 DCM 患者。
在这项两阶段研究中,我们首先在超过 100 万份 12 导联中值 beat ECG 上开发了一个变分自动编码器 DNN,将 ECG 压缩为 21 个不同的因素(F):FactorECG。接下来,我们使用了两个队列,共 695 名 DCM 患者,将这些因素输入 Cox 回归中,以预测复合 LTVA 结局,该结局定义为心脏骤停、自发性持续性室性心动过速或植入式心脏复律除颤器治疗的室性心律失常。大多数患者为男性(n=442,64%),中位年龄为 54 岁[四分位间距(IQR)44-62],中位左心室射血分数为 30%(IQR 23-39)。共有 115 名患者(16.5%)达到了研究结局。F8(PR 间期和 P 波持续时间延长,P<0.005)、F15(P 波高度降低,P=0.04)、F25(右束支传导延迟增加,P=0.02)、F27(P 波轴 P<0.005)和 F32(QRS-T 电压降低,P=0.03)与 LTVA 显著相关。
内在可解释的 DNN 可以检测出有发生 LTVA 风险的患者,主要由 P 波异常驱动。