Suppr超能文献

Low-cost nature-inspired deep learning system for PM2.5 forecast over Delhi, India.

作者信息

Pruthi D, Liu Y

机构信息

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

出版信息

Environ Int. 2022 Aug;166:107373. doi: 10.1016/j.envint.2022.107373. Epub 2022 Jun 25.

Abstract

Air quality has a tremendous impact on India's health and prosperity. Air quality models are crucial tools for surveying and projecting air pollution episodes, which can be used to issue health advisories to take action ahead of time. Short-term increases in air pollution trigger many adverse health events; a fast, efficient, cost-effective, and reliable air quality prediction model would aid in minimizing the effect on health and prosperity. Deterministic models, on the other hand, are less robust in predicting the pollutant series since it is non-stationary and non-linear. Atmospheric chemistry models are computationally expensive and often rely on outdated emissions information. We propose a deep learning model in this study that integrates neural networks, fuzzy inference systems, and wavelet transforms to predict the most prominent air pollutant affecting Delhi, India i.e., PM2.5 (particulate matter of aerodynamic diameter less than or equal to 2.5 µm). We have included the main aspects of air quality models in this research i.e., less computational time (7 min approximately using I5-1035G1, 1.19 GHz processor), less resource-intensive (dependent only on the pollutant lagged values), and high spatial resolution (1 km) for forecasting air quality three days ahead. The model predictions show a significant correlation coefficient lying in [0.96,0.98], [0.86,0.93], and [0.82,0.91] with Central Pollution Control Board (CPCB) monitored data at various sites in Delhi for one, two, and three days of forecast respectively.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验