Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada.
School of Computing Science, Simon Fraser University, Burnaby, Canada.
Nat Commun. 2022 Jun 28;13(1):3704. doi: 10.1038/s41467-022-31337-w.
Despite the availability of chromatin conformation capture experiments, discerning the relationship between the 1D genome and 3D conformation remains a challenge, which limits our understanding of their affect on gene expression and disease. We propose Hi-C-LSTM, a method that produces low-dimensional latent representations that summarize intra-chromosomal Hi-C contacts via a recurrent long short-term memory neural network model. We find that these representations contain all the information needed to recreate the observed Hi-C matrix with high accuracy, outperforming existing methods. These representations enable the identification of a variety of conformation-defining genomic elements, including nuclear compartments and conformation-related transcription factors. They furthermore enable in-silico perturbation experiments that measure the influence of cis-regulatory elements on conformation.
尽管已有染色质构象捕获实验,但仍难以准确判断一维基因组与三维构象之间的关系,这限制了我们对其如何影响基因表达和疾病的理解。我们提出了 Hi-C-LSTM 方法,该方法通过递归长短时记忆神经网络模型生成低维潜在表示,从而总结染色体内 Hi-C 接触。我们发现,这些表示包含了以高精度重新创建观察到的 Hi-C 矩阵所需的所有信息,优于现有方法。这些表示不仅可以识别各种构象定义的基因组元件,包括核区室和构象相关转录因子,还可以进行模拟扰动实验,以测量顺式调控元件对构象的影响。