Suppr超能文献

巴西严重急性呼吸道感染监测:公立、私立和慈善医疗机构的作用。

Severe acute respiratory infection surveillance in Brazil: the role of public, private and philanthropic healthcare units.

机构信息

Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS 90050-170, Brazil.

Fiocruz, Programa de Computação Científica, Grupo de Métodos Analíticos em Vigilância Epidemiológica (MAVE), Av Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil.

出版信息

Health Policy Plan. 2022 Oct 12;37(9):1075-1085. doi: 10.1093/heapol/czac050.

Abstract

Epidemiological surveillance and notification of respiratory infections are important for management and control of epidemics and pandemics. Fact-based decisions, like social distancing policies and preparation of hospital beds, are taken based on several factors, including case numbers; hence, health authorities need quick access to reliable and well-analysed data. We aimed to analyse the role of the Brazilian public health system in the notification and hospitalization of patients with severe acute respiratory infection (SARI). Data of SARI cases in Brazil (2013-20) were obtained from SIVEP-Gripe platform, and legal status of each healthcare unit (HCU) responsible for case notification and hospitalization was obtained from the National Registry of Health Facilities (CNES) database. HCUs that are part of the hospital network were classified as 'Public Administration', 'Business Entities', 'Philanthropic Entities' or 'Individuals'. SARI notification data from Brazilian macro-regions (North, Northeast, Midwest, Southeast and South) were analysed and compared between administrative spheres. This study reveals that hospitalizations due to SARI increased significantly in Brazil during the coronavirus disease 2019 (COVID-19) pandemic, especially in HCUs of Public Administration. In the Southeast and South, where incidence of SARI is high, philanthropic HCUs also contribute to hospitalization of SARI cases and attend up to 7.4% of the cases notified by the Public Administration. The number of cases is usually lower in other regions, but in 2020 the Northeast showed more hospitalizations than the South. In the South, SARI season occurs later; however, in 2020, an early peak was observed because of COVID-19. Notably, the contribution of each administrative sphere that manages hospital networks in Brazil in the control and management of SARI varies between regions. Our approach will allow managers to assess the use of public resources, given that there are different profiles of healthcare in each region of Brazil and that the public health system has a major role in notifying and attending SARI cases.

摘要

传染病的流行病学监测和通报对于传染病和大流行病的管理和控制非常重要。基于病例数量等因素,采取了基于事实的决策,如社会隔离政策和医院床位准备等,因此,卫生当局需要快速获得可靠和经过充分分析的数据。我们旨在分析巴西公共卫生系统在严重急性呼吸道感染(SARI)患者的通报和住院治疗中的作用。从 SIVEP-Gripe 平台获得了 2013 年至 2020 年期间巴西 SARI 病例的数据,并从国家卫生设施登记处(CNES)数据库获得了负责病例通报和住院治疗的每个医疗保健单位(HCU)的法律地位。属于医院网络一部分的 HCU 被归类为“公共管理”、“企业实体”、“慈善实体”或“个人”。对来自巴西各地区(北部、东北部、中西部、东南部和南部)的 SARI 通报数据进行了分析,并比较了行政区域之间的差异。本研究表明,在 2019 冠状病毒病(COVID-19)大流行期间,巴西的 SARI 住院人数显著增加,尤其是在公共管理部门的 HCU 中。在东南部和南部,SARI 的发病率较高,慈善性 HCU 也有助于 SARI 病例的住院治疗,并且收治了高达公共管理部门通报病例的 7.4%。在其他地区,病例数量通常较少,但在 2020 年,东北地区的住院人数超过了南部。在南部,SARI 季节较晚;然而,由于 COVID-19,2020 年观察到了早期高峰。值得注意的是,在巴西,负责管理医院网络的每个行政区域在 SARI 的控制和管理方面的贡献在不同地区有所不同。我们的方法将使管理者能够评估公共资源的使用情况,因为巴西每个地区的医疗保健情况都有不同的特点,公共卫生系统在通报和收治 SARI 病例方面发挥着重要作用。

相似文献

8
Machine learning in predicting severe acute respiratory infection outbreaks.机器学习在预测严重急性呼吸感染爆发中的应用。
Cad Saude Publica. 2024 Jan 8;40(1):e00122823. doi: 10.1590/0102-311XEN122823. eCollection 2024.

引用本文的文献

6
Machine learning in predicting severe acute respiratory infection outbreaks.机器学习在预测严重急性呼吸感染爆发中的应用。
Cad Saude Publica. 2024 Jan 8;40(1):e00122823. doi: 10.1590/0102-311XEN122823. eCollection 2024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验