Suppr超能文献

核心转录程序控制视网膜神经节细胞损伤诱导的神经变性。

Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells.

机构信息

F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.

Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1761, USA.

出版信息

Neuron. 2022 Aug 17;110(16):2607-2624.e8. doi: 10.1016/j.neuron.2022.06.003. Epub 2022 Jun 28.

Abstract

Regulatory programs governing neuronal death and axon regeneration in neurodegenerative diseases remain poorly understood. In adult mice, optic nerve crush (ONC) injury by severing retinal ganglion cell (RGC) axons results in massive RGC death and regenerative failure. We performed an in vivo CRISPR-Cas9-based genome-wide screen of 1,893 transcription factors (TFs) to seek repressors of RGC survival and axon regeneration following ONC. In parallel, we profiled the epigenetic and transcriptional landscapes of injured RGCs by ATAC-seq and RNA-seq to identify injury-responsive TFs and their targets. These analyses converged on four TFs as critical survival regulators, of which ATF3/CHOP preferentially regulate pathways activated by cytokines and innate immunity and ATF4/C/EBPγ regulate pathways engaged by intrinsic neuronal stressors. Manipulation of these TFs protects RGCs in a glaucoma model. Our results reveal core transcription programs that transform an initial axonal insult into a degenerative process and suggest novel strategies for treating neurodegenerative diseases.

摘要

调控神经元死亡和轴突再生的相关机制在神经退行性疾病中的研究还不够深入。成年小鼠的视神经挤压(ONC)损伤通过切断视网膜神经节细胞(RGC)轴突导致大量的 RGC 死亡和再生失败。我们利用 CRISPR-Cas9 对 1893 个转录因子(TFs)进行了体内全基因组筛选,旨在寻找 ONC 后抑制 RGC 存活和轴突再生的转录因子。同时,我们通过 ATAC-seq 和 RNA-seq 对损伤的 RGC 进行了表观基因组和转录组分析,以鉴定损伤反应性 TFs 及其靶基因。这些分析集中在四个关键的生存调节 TF 上,其中 ATF3/CHOP 优先调节细胞因子和固有免疫激活的途径,而 ATF4/C/EBPγ 则调节内在神经元应激物所涉及的途径。这些 TF 的操纵可在青光眼模型中保护 RGC。我们的研究结果揭示了将初始轴突损伤转化为退行性过程的核心转录程序,并为治疗神经退行性疾病提供了新的策略。

相似文献

引用本文的文献

1
Cutting-edge technologies in neural regeneration.神经再生领域的前沿技术。
Cell Regen. 2025 Sep 5;14(1):38. doi: 10.1186/s13619-025-00260-y.
2
Methods and applications of in vivo CRISPR screening.体内CRISPR筛选的方法与应用
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.

本文引用的文献

2
Central nervous system regeneration.中枢神经系统再生。
Cell. 2022 Jan 6;185(1):77-94. doi: 10.1016/j.cell.2021.10.029.
3
Axon Regeneration: A Subcellular Extension in Multiple Dimensions.轴突再生:多个维度的亚细胞延伸。
Cold Spring Harb Perspect Biol. 2022 Mar 1;14(3):a040923. doi: 10.1101/cshperspect.a040923.
8
Twelve years of SAMtools and BCFtools.SAMtools 和 BCFtools 十二年。
Gigascience. 2021 Feb 16;10(2). doi: 10.1093/gigascience/giab008.
10
GENCODE 2021.GENCODE 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D916-D923. doi: 10.1093/nar/gkaa1087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验