Suppr超能文献

视神经损伤后的分子机制:从转录组学角度看神经修复策略。

Molecular mechanisms after optic nerve injury: Neurorepair strategies from a transcriptomic perspective.

作者信息

Chen Xiaxue, Wei Muyang, Li Guangyu

机构信息

Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin Province, China.

出版信息

Neural Regen Res. 2025 Apr 29. doi: 10.4103/NRR.NRR-D-24-00794.

Abstract

Retinal ganglion cells, a crucial component of the central nervous system, are often affected by irreversible visual impairment due to various conditions, including trauma, tumors, ischemia, and glaucoma. Studies have shown that the optic nerve crush model and glaucoma model are commonly used to study retinal ganglion cell injury. While these models differ in their mechanisms, both ultimately result in retinal ganglion cell injury. With advancements in high-throughput technologies, techniques such as microarray analysis, RNA sequencing, and single-cell RNA sequencing have been widely applied to characterize the transcriptomic profiles of retinal ganglion cell injury, revealing underlying molecular mechanisms. This review focuses on optic nerve crush and glaucoma models, elucidating the mechanisms of optic nerve injury and neuron degeneration induced by glaucoma through single-cell transcriptomics, transcriptome analysis, and chip analysis. Research using the optic nerve crush model has shown that different retinal ganglion cell subtypes exhibit varying survival and regenerative capacities following injury. Single-cell RNA sequencing has identified multiple genes associated with retinal ganglion cell protection and regeneration, such as Gal, Ucn, and Anxa2. In glaucoma models, high-throughput sequencing has revealed transcriptomic changes in retinal ganglion cells under elevated intraocular pressure, identifying genes related to immune response, oxidative stress, and apoptosis. These genes are significantly upregulated early after optic nerve injury and may play key roles in neuroprotection and axon regeneration. Additionally, CRISPR-Cas9 screening and ATAC-seq analysis have identified key transcription factors that regulate retinal ganglion cell survival and axon regeneration, offering new potential targets for neurorepair strategies in glaucoma. In summary, single-cell transcriptomic technologies provide unprecedented insights into the molecular mechanisms underlying optic nerve injury, aiding in the identification of novel therapeutic targets. Future researchers should integrate advanced single-cell sequencing with multi-omics approaches to investigate cell-specific responses in retinal ganglion cell injury and regeneration. Furthermore, computational models and systems biology methods could help predict molecular pathways interactions, providing valuable guidance for clinical research on optic nerve regeneration and repair.

摘要

视网膜神经节细胞是中枢神经系统的重要组成部分,常因包括创伤、肿瘤、缺血和青光眼在内的各种病症而受到不可逆的视力损害。研究表明,视神经挤压模型和青光眼模型常用于研究视网膜神经节细胞损伤。虽然这些模型的机制不同,但最终都会导致视网膜神经节细胞损伤。随着高通量技术的进步,诸如微阵列分析、RNA测序和单细胞RNA测序等技术已被广泛应用于表征视网膜神经节细胞损伤的转录组图谱,揭示潜在的分子机制。本综述聚焦于视神经挤压和青光眼模型,通过单细胞转录组学、转录组分析和芯片分析阐明青光眼所致视神经损伤和神经元变性的机制。使用视神经挤压模型的研究表明,不同的视网膜神经节细胞亚型在损伤后表现出不同的存活和再生能力。单细胞RNA测序已鉴定出多个与视网膜神经节细胞保护和再生相关的基因,如Gal、Ucn和Anxa2。在青光眼模型中,高通量测序揭示了眼内压升高时视网膜神经节细胞的转录组变化,鉴定出与免疫反应、氧化应激和细胞凋亡相关的基因。这些基因在视神经损伤后早期显著上调,可能在神经保护和轴突再生中起关键作用。此外,CRISPR-Cas9筛选和ATAC-seq分析已鉴定出调节视网膜神经节细胞存活和轴突再生的关键转录因子,为青光眼的神经修复策略提供了新的潜在靶点。总之,单细胞转录组技术为视神经损伤的潜在分子机制提供了前所未有的见解,有助于鉴定新的治疗靶点。未来的研究人员应将先进的单细胞测序与多组学方法相结合,以研究视网膜神经节细胞损伤和再生中的细胞特异性反应。此外,计算模型和系统生物学方法有助于预测分子途径相互作用,为视神经再生和修复的临床研究提供有价值的指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验