Suppr超能文献

选择性增强 V1 中的神经编码是树鼩精细辨别学习的基础。

Selective enhancement of neural coding in V1 underlies fine-discrimination learning in tree shrew.

机构信息

Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA.

Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA.

出版信息

Curr Biol. 2022 Aug 8;32(15):3245-3260.e5. doi: 10.1016/j.cub.2022.06.009. Epub 2022 Jun 28.

Abstract

Visual discrimination improves with training, a phenomenon that is thought to reflect plastic changes in the responses of neurons in primary visual cortex (V1). However, the identity of the neurons that undergo change, the nature of the changes, and the consequences of these changes for other visual behaviors remain unclear. We used chronic in vivo 2-photon calcium imaging to monitor the responses of neurons in the V1 of tree shrews learning a Go/No-Go fine orientation discrimination task. We observed increases in neural population measures of discriminability for task-relevant stimuli that correlate with performance and depend on a select subset of neurons with preferred orientations that include the rewarded stimulus and nearby orientations biased away from the non-rewarded stimulus. Learning is accompanied by selective enhancement in the response of these neurons to the rewarded stimulus that further increases their ability to discriminate the task stimuli. These changes persist outside of the trained task and predict observed enhancement and impairment in performance of other discriminations, providing evidence for selective and persistent learning-induced plasticity in the V1, with significant consequences for perception.

摘要

视觉辨别能力随着训练而提高,这种现象被认为反映了初级视觉皮层(V1)中神经元反应的可塑性变化。然而,哪些神经元发生了变化、变化的性质以及这些变化对其他视觉行为的影响仍然不清楚。我们使用慢性在体双光子钙成像来监测树鼩 V1 中神经元对 Go/No-Go 精细方向辨别任务的反应。我们观察到与表现相关的神经元群体可辨别性的增加,这些增加与表现相关,取决于一组具有特定偏好方向的神经元,这些神经元包括奖励刺激和偏向非奖励刺激的附近方向。学习伴随着这些神经元对奖励刺激的反应选择性增强,进一步提高了它们辨别任务刺激的能力。这些变化在训练任务之外仍然存在,并预测了其他辨别任务中观察到的增强和损害,为 V1 中选择性和持续的学习诱导可塑性提供了证据,并对感知产生了重大影响。

相似文献

3
Mechanisms of visual perceptual learning in macaque visual cortex.猕猴视觉皮层中视觉感知学习的机制。
Top Cogn Sci. 2010 Apr;2(2):239-50. doi: 10.1111/j.1756-8765.2009.01051.x. Epub 2009 Oct 30.

引用本文的文献

7
Profiles of visual perceptual learning in feature space.特征空间中的视觉感知学习概况。
iScience. 2024 Feb 6;27(3):109128. doi: 10.1016/j.isci.2024.109128. eCollection 2024 Mar 15.

本文引用的文献

1
Postnatal Development of Visual Cortical Function in the Mammalian Brain.哺乳动物大脑视觉皮质功能的产后发育
Front Syst Neurosci. 2020 Jun 9;14:29. doi: 10.3389/fnsys.2020.00029. eCollection 2020.
4
Cortical layer-specific critical dynamics triggering perception.皮层层特异性关键动力学触发感知。
Science. 2019 Aug 9;365(6453). doi: 10.1126/science.aaw5202. Epub 2019 Jul 18.
9
The Second Visual System of The Tree Shrew.树鼩的第二视觉系统。
J Comp Neurol. 2019 Feb 15;527(3):679-693. doi: 10.1002/cne.24413. Epub 2018 Mar 9.
10
Optimal go/no-go ratios to maximize false alarms.最佳的“是/否”反应比以最大化假警报。
Behav Res Methods. 2018 Jun;50(3):1020-1029. doi: 10.3758/s13428-017-0923-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验