Suppr超能文献

HSMotifDiscover:识别由非单字母元素组成的序列中的基序。

HSMotifDiscover: identification of motifs in sequences composed of non-single-letter elements.

机构信息

Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

Bioinformatics. 2022 Aug 10;38(16):4036-4038. doi: 10.1093/bioinformatics/btac437.

Abstract

SUMMARY

The functional sub-string(s) of a biopolymer sequence defines the specificity of its interaction with other biomolecules and is often referred to as motifs. Computational algorithms and software have been broadly developed for finding such motifs in sequences in which the individual elements are single characters, such as those in DNA and protein sequences. However, there are more complex scenarios where the motifs exist in non-single-letter contexts, e.g. preferred patterns of chemical modifications on proteins, DNAs, RNAs or polysaccharides. To search for those motifs, we describe a new method that converts the modified sequence elements to representative single-letter codes and then uses a modified Gibbs-sampling algorithm to define the position specific scoring matrix representing the motif(s). As a proof of principle, we describe the implementation and application of an R package for discovering heparan sulfate (HS) motifs in glycan sequences, which are important in regulating protein-protein interactions. This software can be valuable for analyzing high-throughput glycoprotein binding data using microarrays with HS oligosaccharides or other biological polymers.

AVAILABILITY AND IMPLEMENTATION

HSMotifDiscover is freely available as an open source R package released under an MIT license at https://github.com/bioinfoDZ/HSMotifDiscover and also available in the form of an app at https://hsmotifdiscover.shinyapps.io/HSMotifDiscover_ShinyApp/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

生物聚合物序列的功能子串定义了其与其他生物分子相互作用的特异性,通常被称为基序。已经广泛开发了计算算法和软件来在单个元素为单个字符的序列中查找此类基序,例如 DNA 和蛋白质序列。然而,在更复杂的情况下,基序存在于非单字母的上下文中,例如蛋白质、DNA、RNA 或多糖上的化学修饰的首选模式。为了搜索这些基序,我们描述了一种新方法,该方法将修饰的序列元素转换为代表单字母的代码,然后使用修改后的 Gibbs 抽样算法来定义表示基序的位置特定评分矩阵。作为原理证明,我们描述了用于在聚糖序列中发现肝素硫酸盐 (HS) 基序的 R 包的实现和应用,这些基序在调节蛋白质-蛋白质相互作用中很重要。该软件可用于分析使用 HS 寡糖或其他生物聚合物的微阵列进行的高通量糖蛋白结合数据。

可用性和实现

HSMotifDiscover 作为一个开源 R 包免费提供,根据 MIT 许可证发布在 https://github.com/bioinfoDZ/HSMotifDiscover 上,也可以在 https://hsmotifdiscover.shinyapps.io/HSMotifDiscover_ShinyApp/ 以应用程序的形式提供。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

4
Stereo3D: using stereo images to enrich 3D visualization.立体 3D:利用立体图像丰富 3D 可视化。
Bioinformatics. 2020 Aug 15;36(14):4189-4190. doi: 10.1093/bioinformatics/btaa521.

本文引用的文献

1
Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2.硫酸乙酰肝素蛋白聚糖作为新冠病毒的附着因子
ACS Cent Sci. 2021 Jun 23;7(6):1009-1018. doi: 10.1021/acscentsci.1c00010. Epub 2021 Jun 2.
3
Deciphering functional glycosaminoglycan motifs in development.解析发育过程中的功能糖胺聚糖基序。
Curr Opin Struct Biol. 2018 Jun;50:144-154. doi: 10.1016/j.sbi.2018.03.011. Epub 2018 Mar 24.
4
Specificity of glycosaminoglycan-protein interactions.糖胺聚糖-蛋白相互作用的特异性。
Curr Opin Struct Biol. 2018 Jun;50:101-108. doi: 10.1016/j.sbi.2017.12.011. Epub 2018 Feb 9.
5
7
Demystifying heparan sulfate-protein interactions.解读硫酸乙酰肝素-蛋白质相互作用
Annu Rev Biochem. 2014;83:129-57. doi: 10.1146/annurev-biochem-060713-035314. Epub 2014 Mar 6.
9
Heparan sulfate proteoglycans.肝素硫酸蛋白聚糖。
Cold Spring Harb Perspect Biol. 2011 Jul 1;3(7):a004952. doi: 10.1101/cshperspect.a004952.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验