Suppr超能文献

利用心电图信号预测创伤患者的低血压发作。

Using ECG signals for hypotensive episode prediction in trauma patients.

机构信息

Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Israel.

Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Israel.

出版信息

Comput Methods Programs Biomed. 2022 Aug;223:106955. doi: 10.1016/j.cmpb.2022.106955. Epub 2022 Jun 19.

Abstract

BACKGROUND AND OBJECTIVES

Bleeding is the leading cause of death among trauma patients both in military and civilian scenarios, and it is also the most common cause of preventable death. Identifying a casualty who suffers from an internal bleeding and may deteriorate rapidly and develop hemorrhagic shock and multiorgan failure is a profound challenge. Blood pressure and heart rate are the main vital signs used nowadays for the casualty clinical evaluation in the battlefield and in intensive care unit. However, these vitals tend to deteriorate at a relatively late stage, when the ability to prevent hazardous complications is limited. Identifying, treating, and rapidly evacuating such casualties might mitigate these complications. In this work, we try to improve a state-of-the-art method for early identification of Hypotensive Episode (HE), by adding electrocardiogram signals to several vital signs.

METHODS

In this research, we propose to extend the state-of-the-art HE early detection method, In-Window Segmentation (InWise), by adding new types of features extracted from ECG signals. The new predictive features can be extracted from ECG signals both manually and automatically by a convolutional auto-encoder. In addition to InWise, we are trying to predict HE using a Transformer model. The Transformer is using the encoder output as an embedding of the ECG signal. The proposed approach is evaluated on trauma patients data from the MIMIC III database.

RESULTS

We evaluated the InWise prediction algorithm using four different groups of features. The first feature group contains the 93 original features extracted from vital signs. The second group contains, in addition to the original features, 24 features extracted manually from ECG signal (117 features in total). The third group contains the original features and 20 ECG features extracted by the AE (113 features in total), and the last group is the union of all three previous groups containing 137 features. The results show that each model, which has used ECG data, is outperforming the original InWise model, in terms of AUC and sensitivity with p-value <0.001 (by 0.7% in AUC and up to 3.8% in sensitivity). The model which has used all three feature types (vital signs, manual ECG and AE ECG), outperforms the original model both in terms of accuracy and specificity with p-value <0.001 (by 0.3% and 0.4% respectively).

CONCLUSION

The results show an improvement in the prediction success rates as a result of using ECG-based features. The importance of ECG features was confirmed by the feature importance analysis.

摘要

背景与目的

在军事和民用场景中,出血是创伤患者死亡的主要原因,也是可预防死亡的最常见原因。识别可能迅速恶化并发生出血性休克和多器官衰竭的内出血伤员是一个巨大的挑战。血压和心率是目前用于战场和重症监护病房伤员临床评估的主要生命体征。然而,这些生命体征往往在相对较晚的阶段恶化,此时预防危险并发症的能力有限。识别、治疗和迅速转移此类伤员可能会减轻这些并发症。在这项工作中,我们尝试通过将心电图信号添加到几种生命体征中,来改进一种用于早期识别低血压发作(HE)的最先进方法。

方法

在这项研究中,我们提出通过添加从心电图信号中提取的新型特征来扩展最先进的 HE 早期检测方法——窗口内分段(InWise)。新的预测特征可以通过卷积自动编码器手动和自动从 ECG 信号中提取。除了 InWise,我们还尝试使用 Transformer 模型来预测 HE。Transformer 模型使用编码器输出作为 ECG 信号的嵌入。该方法在 MIMIC III 数据库中的创伤患者数据上进行了评估。

结果

我们使用四组不同的特征来评估 InWise 预测算法。第一组特征包含从生命体征中提取的 93 个原始特征。第二组特征除了原始特征外,还包含从心电图信号中手动提取的 24 个特征(共 117 个特征)。第三组特征包含原始特征和由 AE 提取的 20 个 ECG 特征(共 113 个特征),最后一组是前三个组的并集,包含 137 个特征。结果表明,使用 ECG 数据的每个模型在 AUC 和敏感性方面都优于原始 InWise 模型,p 值均<0.001(AUC 提高 0.7%,敏感性提高 3.8%)。使用所有三种特征类型(生命体征、手动 ECG 和 AE ECG)的模型在准确性和特异性方面均优于原始模型,p 值均<0.001(分别提高 0.3%和 0.4%)。

结论

结果表明,由于使用基于心电图的特征,预测成功率有所提高。特征重要性分析证实了心电图特征的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验