Lu Ping, Wang Chenyang, Hagenah Jannis, Ghiasi Shadi, Consortium Vital, Zhu Tingting, Thwaites Louise, Clifton David A
IEEE Trans Biomed Eng. 2023 Apr;70(4):1340-1350. doi: 10.1109/TBME.2022.3216383. Epub 2023 Mar 21.
Tetanus is a life-threatening infectious disease, which is still common in low- and middle-income countries, including in Vietnam. This disease is characterized by muscle spasm and in severe cases is complicated by autonomic dysfunction. Ideally continuous vital sign monitoring using bedside monitors allows the prompt detection of the onset of autonomic nervous system dysfunction or avoiding rapid deterioration. Detection can be improved using heart rate variability analysis from ECG signals. Recently, characteristic ECG and heart rate variability features have been shown to be of value in classifying tetanus severity. However, conventional manual analysis of ECG is time-consuming. The traditional convolutional neural network (CNN) has limitations in extracting the global context information, due to its fixed-sized kernel filters. In this work, we propose a novel hybrid CNN-Transformer model to automatically classify tetanus severity using tetanus monitoring from low-cost wearable sensors. This model can capture the local features from the CNN and the global features from the Transformer. The time series imaging - spectrogram - is transformed from one-dimensional ECG signal and input to the proposed model. The CNN-Transformer model outperforms state-of-the-art methods in tetanus classification, achieves results with a F1 score of 0.82±0.03, precision of 0.94±0.03, recall of 0.73±0.07, specificity of 0.97±0.02, accuracy of 0.88±0.01 and AUC of 0.85±0.03. In addition, we found that Random Forest with enough manually selected features can be comparable with the proposed CNN-Transformer model.
破伤风是一种危及生命的传染病,在包括越南在内的低收入和中等收入国家仍然很常见。这种疾病的特征是肌肉痉挛,严重时会并发自主神经功能障碍。理想情况下,使用床边监护仪持续监测生命体征可以及时发现自主神经系统功能障碍的发作或避免病情迅速恶化。通过分析心电图(ECG)信号的心率变异性可以提高检测效果。最近,有研究表明,特征性的心电图和心率变异性特征在破伤风严重程度分类中具有重要价值。然而,传统的心电图手动分析非常耗时。传统的卷积神经网络(CNN)由于其固定大小的内核滤波器,在提取全局上下文信息方面存在局限性。在这项工作中,我们提出了一种新颖的混合CNN-Transformer模型,用于使用低成本可穿戴传感器的破伤风监测自动分类破伤风严重程度。该模型可以捕捉CNN的局部特征和Transformer的全局特征。将一维心电图信号转换为时间序列图像——频谱图,并输入到所提出的模型中。CNN-Transformer模型在破伤风分类方面优于现有方法,F1分数为0.82±0.03,精确率为0.94±0.03,召回率为0.73±0.07,特异性为0.97±0.02,准确率为0.88±0.01,曲线下面积(AUC)为0.85±0.03。此外,我们发现具有足够手动选择特征的随机森林可以与所提出的CNN-Transformer模型相媲美。