Suppr超能文献

用于手术数据科学中跨模态知识转移的语义高光谱图像合成

Semantic hyperspectral image synthesis for cross-modality knowledge transfer in surgical data science.

作者信息

Tran Ba Viet, Hübner Marco, Bin Qasim Ahmad, Rees Maike, Sellner Jan, Seidlitz Silvia, Christodoulou Evangelia, Özdemir Berkin, Studier-Fischer Alexander, Nickel Felix, Ayala Leonardo, Maier-Hein Lena

机构信息

Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2025 Apr 24. doi: 10.1007/s11548-025-03364-7.

Abstract

PURPOSE

Hyperspectral imaging (HSI) is a promising intraoperative imaging modality, with potential applications ranging from tissue classification and discrimination to perfusion monitoring and cancer detection. However, surgical HSI datasets are scarce, hindering the development of robust data-driven algorithms. The purpose of this work was to address this critical bottleneck with a novel approach to knowledge transfer across modalities.

METHODS

We propose the use of generative modeling to leverage imaging data across optical imaging modalities. The core of the method is a latent diffusion model (LDM) capable of converting a semantic segmentation mask obtained from any modality into a realistic hyperspectral image, such that geometry information can be learned across modalities. The value of the approach was assessed both qualitatively and quantitatively using surgical scene segmentation as a downstream task.

RESULTS

Our study with more than 13,000 hyperspectral images, partially annotated with a total of 37 tissue and object classes, suggests that LDMs are well-suited for the synthesis of realistic high-resolution hyperspectral images even when trained on few samples or applied to annotations from different modalities and geometric out-of-distribution annotations. Using our approach for generative augmentation yielded a performance boost of up to 35% in the Dice similarity coefficient for the task of semantic hyperspectral image segmentation.

CONCLUSION

As our method is capable of augmenting HSI datasets in a manner agnostic to the modality of the leveraged data, it could serve as a blueprint for addressing the data bottleneck encountered for novel imaging modalities.

摘要

目的

高光谱成像(HSI)是一种很有前景的术中成像方式,其潜在应用范围涵盖从组织分类与辨别到灌注监测及癌症检测等领域。然而,手术HSI数据集匮乏,这阻碍了强大的数据驱动算法的发展。这项工作的目的是通过一种跨模态知识转移的新方法来解决这一关键瓶颈。

方法

我们提议使用生成模型来利用跨光学成像模态的成像数据。该方法的核心是一个潜在扩散模型(LDM),它能够将从任何模态获得的语义分割掩码转换为逼真的高光谱图像,从而可以跨模态学习几何信息。使用手术场景分割作为下游任务,从定性和定量两方面评估了该方法的价值。

结果

我们对13000多张高光谱图像进行的研究,其中部分标注了总共37种组织和物体类别,结果表明,即使在少量样本上进行训练,或者应用于来自不同模态的标注以及几何分布外的标注时,LDM也非常适合合成逼真的高分辨率高光谱图像。使用我们的生成式增强方法,在语义高光谱图像分割任务的骰子相似系数方面,性能提升高达35%。

结论

由于我们的方法能够以一种与所利用数据的模态无关的方式增强HSI数据集,它可以作为解决新成像模态所遇到的数据瓶颈的蓝图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验