Suppr超能文献

使用共聚焦空气耦合光学相干弹性成像技术对局部交联治疗下的角膜生物力学进行评估。

assessment of corneal biomechanics under a localized cross-linking treatment using confocal air-coupled optical coherence elastography.

作者信息

Zvietcovich Fernando, Nair Achuth, Singh Manmohan, Aglyamov Salavat R, Twa Michael D, Larin Kirill V

机构信息

Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA.

Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru.

出版信息

Biomed Opt Express. 2022 Apr 5;13(5):2644-2654. doi: 10.1364/BOE.456186. eCollection 2022 May 1.

Abstract

The localized application of the riboflavin/UV-A collagen cross-linking (UV-CXL) corneal treatment has been proposed to concentrate the stiffening process only in the compromised regions of the cornea by limiting the epithelium removal and irradiation area. However, current clinical screening devices dedicated to measuring corneal biomechanics cannot provide maps nor spatial-dependent changes of elasticity in corneas when treated locally with UV-CXL. In this study, we leverage our previously reported confocal air-coupled ultrasonic optical coherence elastography (ACUS-OCE) probe to study local changes of corneal elasticity in three cases: untreated, half-CXL-treated, and full-CXL-treated rabbit corneas (n = 8). We found a significant increase of the shear modulus in the half-treated (>450%) and full-treated (>650%) corneal regions when compared to the non-treated cases. Therefore, the ACUS-OCE technology possesses a great potential in detecting spatially-dependent mechanical properties of the cornea at multiple meridians and generating elastography maps that are clinically relevant for patient-specific treatment planning and monitoring of UV-CXL procedures.

摘要

核黄素/紫外线A胶原交联(UV-CXL)角膜治疗的局部应用被提议通过限制上皮去除和照射区域,仅将角膜的硬化过程集中在角膜的受损区域。然而,当前致力于测量角膜生物力学的临床筛查设备,在对角膜进行局部UV-CXL治疗时,无法提供角膜弹性的图谱或空间依赖性变化。在本研究中,我们利用我们之前报道的共焦空气耦合超声光学相干弹性成像(ACUS-OCE)探头,研究了三种情况下兔角膜的局部弹性变化:未治疗、半CXL治疗和全CXL治疗(n = 8)。我们发现,与未治疗的情况相比,半治疗(>450%)和全治疗(>650%)的角膜区域的剪切模量显著增加。因此,ACUS-OCE技术在检测角膜在多个子午线的空间依赖性力学特性以及生成对患者特定治疗计划和UV-CXL程序监测具有临床相关性的弹性成像图谱方面具有巨大潜力。

相似文献

1
assessment of corneal biomechanics under a localized cross-linking treatment using confocal air-coupled optical coherence elastography.
Biomed Opt Express. 2022 Apr 5;13(5):2644-2654. doi: 10.1364/BOE.456186. eCollection 2022 May 1.
2
Acoustic Micro-Tapping Optical Coherence Elastography to Quantify Corneal Collagen Cross-Linking: An Ex Vivo Human Study.
Ophthalmol Sci. 2022 Nov 13;3(2):100257. doi: 10.1016/j.xops.2022.100257. eCollection 2023 Jun.
4
Optical coherence elastography for evaluating customized riboflavin/UV-A corneal collagen crosslinking.
J Biomed Opt. 2017 Sep 1;22(9):91504. doi: 10.1117/1.JBO.22.9.091504.
5
Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking.
Invest Ophthalmol Vis Sci. 2014 Mar 28;55(3):1976-84. doi: 10.1167/iovs.13-13445.
6
Assessing corneal cross-linking with reverberant 3D optical coherence elastography.
J Biomed Opt. 2022 Feb;27(2). doi: 10.1117/1.JBO.27.2.026003.
7
Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography.
Optom Vis Sci. 2018 Apr;95(4):299-308. doi: 10.1097/OPX.0000000000001193.
9
Compressional Optical Coherence Elastography of the Cornea.
Photonics. 2021 Apr;8(4). doi: 10.3390/photonics8040111. Epub 2021 Apr 7.
10
Optical coherence elastography by ambient pressure modulation for high-resolution strain mapping applied to patterned cross-linking.
J R Soc Interface. 2020 Jan;17(162):20190786. doi: 10.1098/rsif.2019.0786. Epub 2020 Jan 22.

引用本文的文献

1
Air-pulse optical coherence elastography: how excitation angle affects mechanical wave propagation.
Biomed Opt Express. 2025 Mar 11;16(4):1371-1391. doi: 10.1364/BOE.557984. eCollection 2025 Apr 1.
2
Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography.
Transl Vis Sci Technol. 2025 Jan 2;14(1):26. doi: 10.1167/tvst.14.1.26.
3
Acoustic Radiation Force Optical Coherence Elastography of the Crystalline Lens: Safety.
Transl Vis Sci Technol. 2024 Dec 2;13(12):36. doi: 10.1167/tvst.13.12.36.
7
In-vivo characterization of scleral rigidity in myopic eyes using fundus-pulsation optical coherence elastography.
Biomed Opt Express. 2024 Apr 29;15(5):3426-3440. doi: 10.1364/BOE.523835. eCollection 2024 May 1.
8
Optical coherence elastography measures the biomechanical properties of the porcine cornea after LASIK.
J Biomed Opt. 2024 Jan;29(1):016002. doi: 10.1117/1.JBO.29.1.016002. Epub 2024 Jan 13.
9
Simultaneous tensile and shear measurement of the human cornea in vivo using S0- and A0-wave optical coherence elastography.
Acta Biomater. 2024 Feb;175:114-122. doi: 10.1016/j.actbio.2023.12.019. Epub 2023 Dec 14.
10
Optomechanical assessment of photorefractive corneal cross-linking via optical coherence elastography.
Front Bioeng Biotechnol. 2023 Nov 13;11:1272097. doi: 10.3389/fbioe.2023.1272097. eCollection 2023.

本文引用的文献

1
Wave-based optical coherence elastography: The 10-year perspective.
Prog Biomed Eng (Bristol). 2022 Jan;4(1). doi: 10.1088/2516-1091/ac4512. Epub 2022 Jan 14.
2
Ultra-fast dynamic line-field optical coherence elastography.
Opt Lett. 2021 Oct 1;46(19):4742-4744. doi: 10.1364/OL.435278.
4
Corneal Biomechanics After Intrastromal Ring Surgery: Optomechanical In Silico Assessment.
Transl Vis Sci Technol. 2020 Oct 21;9(11):26. doi: 10.1167/tvst.9.11.26. eCollection 2020 Oct.
5
Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
Invest Ophthalmol Vis Sci. 2020 Nov 2;61(13):7. doi: 10.1167/iovs.61.13.7.
6
2-D Ultrasonic Array-Based Optical Coherence Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1096-1104. doi: 10.1109/TUFFC.2020.3033304. Epub 2021 Mar 26.
8
In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography.
Biomed Opt Express. 2019 Nov 14;10(12):6272-6285. doi: 10.1364/BOE.10.006272. eCollection 2019 Dec 1.
10
Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography.
J Cataract Refract Surg. 2018 Aug;44(8):1023-1031. doi: 10.1016/j.jcrs.2018.03.036. Epub 2018 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验