Auflem Marius, Kohtala Sampsa, Jung Malte, Steinert Martin
TrollLABS, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
Robots in Groups Lab, Department of Information Science, Cornell University, Ithaca, NY, United States.
Front Robot AI. 2022 Jun 14;9:887645. doi: 10.3389/frobt.2022.887645. eCollection 2022.
This paper presents a new approach for evaluating and controlling expressive humanoid robotic faces using open-source computer vision and machine learning methods. Existing research in Human-Robot Interaction lacks flexible and simple tools that are scalable for evaluating and controlling various robotic faces; thus, our goal is to demonstrate the use of readily available AI-based solutions to support the process. We use a newly developed humanoid robot prototype intended for medical training applications as a case example. The approach automatically captures the robot's facial action units through a webcam during random motion, which are components traditionally used to describe facial muscle movements in humans. Instead of manipulating the actuators individually or training the robot to express specific emotions, we propose using action units as a means for controlling the robotic face, which enables a multitude of ways to generate dynamic motion, expressions, and behavior. The range of action units achieved by the robot is thus analyzed to discover its expressive capabilities and limitations and to develop a control model by correlating action units to actuation parameters. Because the approach is not dependent on specific facial attributes or actuation capabilities, it can be used for different designs and continuously inform the development process. In healthcare training applications, our goal is to establish a prerequisite of expressive capabilities of humanoid robots bounded by industrial and medical design constraints. Furthermore, to mediate human interpretation and thus enable decision-making based on observed cognitive, emotional, and expressive cues, our approach aims to find the minimum viable expressive capabilities of the robot without having to optimize for realism. The results from our case example demonstrate the flexibility and efficiency of the presented AI-based solutions to support the development of humanoid facial robots.
本文提出了一种使用开源计算机视觉和机器学习方法来评估和控制具有表现力的类人机器人面部的新方法。现有的人机交互研究缺乏灵活且简单的工具,这些工具难以扩展用于评估和控制各种机器人面部;因此,我们的目标是展示使用现成的基于人工智能的解决方案来支持这一过程。我们以一个新开发的用于医学训练应用的类人机器人原型为例。该方法在随机运动过程中通过网络摄像头自动捕捉机器人的面部动作单元,这些动作单元是传统上用于描述人类面部肌肉运动的组成部分。我们不是单独操纵执行器或训练机器人表达特定情绪,而是提议使用动作单元作为控制机器人面部的一种方式,这使得能够通过多种方式生成动态运动、表情和行为。因此,分析机器人实现的动作单元范围,以发现其表达能力和局限性,并通过将动作单元与驱动参数相关联来开发控制模型。由于该方法不依赖于特定的面部属性或驱动能力,它可用于不同的设计,并持续为开发过程提供信息。在医疗保健训练应用中,我们的目标是在工业和医学设计约束的范围内建立类人机器人表达能力的先决条件。此外,为了协调人类的解读,从而能够基于观察到的认知、情感和表达线索进行决策,我们的方法旨在找到机器人的最低可行表达能力,而不必针对逼真度进行优化。我们案例的结果证明了所提出的基于人工智能的解决方案在支持类人面部机器人开发方面的灵活性和效率。