Suppr超能文献

MetaTutor的经验教训与未来方向:利用多渠道数据通过智能辅导系统支持自我调节学习

Lessons Learned and Future Directions of MetaTutor: Leveraging Multichannel Data to Scaffold Self-Regulated Learning With an Intelligent Tutoring System.

作者信息

Azevedo Roger, Bouchet François, Duffy Melissa, Harley Jason, Taub Michelle, Trevors Gregory, Cloude Elizabeth, Dever Daryn, Wiedbusch Megan, Wortha Franz, Cerezo Rebeca

机构信息

School of Modeling Simulation and Training, University of Central Florida, Orlando, FL, United States.

Laboratoire d'Informatique de Paris 6 (LIP6), Sorbonne Université, Paris, France.

出版信息

Front Psychol. 2022 Jun 14;13:813632. doi: 10.3389/fpsyg.2022.813632. eCollection 2022.

Abstract

Self-regulated learning (SRL) is critical for learning across tasks, domains, and contexts. Despite its importance, research shows that not all learners are equally skilled at accurately and dynamically monitoring and regulating their self-regulatory processes. Therefore, learning technologies, such as intelligent tutoring systems (ITSs), have been designed to measure and foster SRL. This paper presents an overview of over 10 years of research on SRL with MetaTutor, a hypermedia-based ITS designed to scaffold college students' SRL while they learn about the human circulatory system. MetaTutor's architecture and instructional features are designed based on models of SRL, empirical evidence on human and computerized tutoring principles of multimedia learning, Artificial Intelligence (AI) in educational systems for metacognition and SRL, and research on SRL from our team and that of other researchers. We present MetaTutor followed by a synthesis of key research findings on the effectiveness of various versions of the system (e.g., adaptive scaffolding vs. no scaffolding of self-regulatory behavior) on learning outcomes. First, we focus on findings from self-reports, learning outcomes, and multimodal data (e.g., log files, eye tracking, facial expressions of emotion, screen recordings) and their contributions to our understanding of SRL with an ITS. Second, we elaborate on the role of embedded pedagogical agents (PAs) as external regulators designed to scaffold learners' cognitive and metacognitive SRL strategy use. Third, we highlight and elaborate on the contributions of multimodal data in measuring and understanding the role of cognitive, affective, metacognitive, and motivational (CAMM) processes. Additionally, we unpack some of the challenges these data pose for designing real-time instructional interventions that scaffold SRL. Fourth, we present existing theoretical, methodological, and analytical challenges and briefly discuss lessons learned and open challenges.

摘要

自我调节学习(SRL)对于跨任务、领域和情境的学习至关重要。尽管其很重要,但研究表明并非所有学习者在准确且动态地监控和调节自身的自我调节过程方面都同样熟练。因此,诸如智能辅导系统(ITSs)之类的学习技术已被设计用于测量和促进自我调节学习。本文概述了对MetaTutor这一基于超媒体的智能辅导系统进行的超过10年的自我调节学习研究,该系统旨在在大学生学习人体循环系统时为其自我调节学习提供支持。MetaTutor的架构和教学功能是基于自我调节学习模型、关于多媒体学习的人机辅导原则的实证证据、教育系统中用于元认知和自我调节学习的人工智能(AI)以及我们团队和其他研究人员关于自我调节学习的研究而设计的。我们先介绍MetaTutor,然后综合关于该系统不同版本(例如,自我调节行为的自适应支架与无支架)对学习成果有效性的关键研究发现。首先,我们关注来自自我报告、学习成果和多模态数据(例如,日志文件、眼动追踪、情感面部表情、屏幕录制)的发现及其对我们借助智能辅导系统理解自我调节学习的贡献。其次,我们详细阐述嵌入式教学代理(PAs)作为外部调节器的作用,这些外部调节器旨在支持学习者对认知和元认知自我调节学习策略的运用。第三,我们突出并详细说明多模态数据在测量和理解认知、情感、元认知和动机(CAMM)过程的作用方面的贡献。此外,我们剖析这些数据在设计支持自我调节学习的实时教学干预措施时所带来的一些挑战。第四,我们介绍现有的理论、方法和分析挑战,并简要讨论经验教训和开放挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验