British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK.
Int J Epidemiol. 2022 Dec 13;51(6):1813-1823. doi: 10.1093/ije/dyac140.
Cardiovascular disease (CVD) risk prediction models for individuals with type 2 diabetes are important tools to guide intensification of interventions for CVD prevention. We aimed to assess the added value of incorporating risk factors variability in CVD risk prediction for people with type 2 diabetes.
We used electronic health records (EHRs) data from 83 910 adults with type 2 diabetes but without pre-existing CVD from the UK Clinical Practice Research Datalink for 2004-2017. Using a landmark-modelling approach, we developed and validated sex-specific Cox models, incorporating conventional predictors and trajectories plus variability of systolic blood pressure (SBP), total and high-density lipoprotein (HDL) cholesterol, and glycated haemoglobin (HbA1c). Such models were compared against simpler models using single last observed values or means.
The standard deviations (SDs) of SBP, HDL cholesterol and HbA1c were associated with higher CVD risk (P < 0.05). Models incorporating trajectories and variability of continuous predictors demonstrated improvement in risk discrimination (C-index = 0.659, 95% CI: 0.654-0.663) as compared with using last observed values (C-index = 0.651, 95% CI: 0.646-0.656) or means (C-index = 0.650, 95% CI: 0.645-0.655). Inclusion of SDs of SBP yielded the greatest improvement in discrimination (C-index increase = 0.005, 95% CI: 0.004-0.007) in comparison to incorporating SDs of total cholesterol (C-index increase = 0.002, 95% CI: 0.000-0.003), HbA1c (C-index increase = 0.002, 95% CI: 0.000-0.003) or HDL cholesterol (C-index increase= 0.003, 95% CI: 0.002-0.005).
Incorporating variability of predictors from EHRs provides a modest improvement in CVD risk discrimination for individuals with type 2 diabetes. Given that repeat measures are readily available in EHRs especially for regularly monitored patients with diabetes, this improvement could easily be achieved.
对于 2 型糖尿病患者,心血管疾病(CVD)风险预测模型是指导加强 CVD 预防干预的重要工具。我们旨在评估纳入 2 型糖尿病患者 CVD 风险预测中危险因素变异性的附加价值。
我们使用了来自英国临床实践研究数据链接(2004-2017 年)的 83910 名无既往 CVD 的 2 型糖尿病成人的电子健康记录(EHR)数据。使用里程碑建模方法,我们开发并验证了基于性别的 Cox 模型,纳入了传统预测因子和轨迹以及收缩压(SBP)、总胆固醇和高密度脂蛋白(HDL)胆固醇以及糖化血红蛋白(HbA1c)的变异性。将这些模型与使用最后一次观察值或平均值的简单模型进行了比较。
SBP、HDL 胆固醇和 HbA1c 的标准差(SD)与更高的 CVD 风险相关(P < 0.05)。与使用最后一次观察值(C 指数=0.651,95%CI:0.646-0.656)或平均值(C 指数=0.650,95%CI:0.645-0.655)相比,纳入连续预测因子轨迹和变异性的模型显示出更高的风险区分度(C 指数=0.659,95%CI:0.654-0.663)。与纳入总胆固醇(C 指数增加=0.002,95%CI:0.000-0.003)、HbA1c(C 指数增加=0.002,95%CI:0.000-0.003)或 HDL 胆固醇(C 指数增加=0.003,95%CI:0.002-0.005)相比,纳入 SBP 的 SD 可使区分度提高最大(C 指数增加=0.005,95%CI:0.004-0.007)。
将 EHR 中预测因子的变异性纳入 2 型糖尿病患者的 CVD 风险预测中,可以适度提高 CVD 风险的区分度。鉴于重复测量在 EHR 中很容易获得,尤其是对于经常监测的糖尿病患者,这种改进很容易实现。