Suppr超能文献

DeepEZ:一种基于图卷积网络的静息态 fMRI 连接自动致痫区定位方法。

DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization From Resting-State fMRI Connectivity.

出版信息

IEEE Trans Biomed Eng. 2023 Jan;70(1):216-227. doi: 10.1109/TBME.2022.3187942. Epub 2022 Dec 26.

Abstract

OBJECTIVE

Epileptogenic zone (EZ) localization is a crucial step during diagnostic work up and therapeutic planning in medication refractory epilepsy. In this paper, we present the first deep learning approach to localize the EZ based on resting-state fMRI (rs-fMRI) data.

METHODS

Our network, called DeepEZ, uses a cascade of graph convolutions that emphasize signal propagation along expected anatomical pathways. We also integrate domain-specific information, such as an asymmetry term on the predicted EZ and a learned subject-specific bias to mitigate environmental confounds.

RESULTS

We validate DeepEZ on rs-fMRI collected from 14 patients with focal epilepsy at the University of Wisconsin Madison. Using cross validation, we demonstrate that DeepEZ achieves consistently high EZ localization performance (Accuracy: 0.88 ± 0.03; AUC: 0.73 ± 0.03) that far outstripped any of the baseline methods. This performance is notable given the variability in EZ locations and scanner type across the cohort.

CONCLUSION

Our results highlight the promise of using DeepEZ as an accurate and noninvasive therapeutic planning tool for medication refractory epilepsy.

SIGNIFICANCE

While prior work in EZ localization focused on identifying localized aberrant signatures, there is growing evidence that epileptic seizures affect inter-regional connectivity in the brain. DeepEZ allows clinicians to harness this information from noninvasive imaging that can easily be integrated into the existing clinical workflow.

摘要

目的

在药物难治性癫痫的诊断和治疗计划中,致痫区(EZ)定位是至关重要的一步。在本文中,我们提出了一种基于静息态 fMRI(rs-fMRI)数据的 EZ 定位的深度学习方法。

方法

我们的网络称为 DeepEZ,使用级联图卷积来强调信号沿着预期解剖路径的传播。我们还整合了特定于领域的信息,例如在预测的 EZ 上的不对称项和学习的主题特异性偏差,以减轻环境混杂因素的影响。

结果

我们在威斯康星大学麦迪逊分校的 14 名局灶性癫痫患者的 rs-fMRI 上验证了 DeepEZ。通过交叉验证,我们证明 DeepEZ 实现了一致的高 EZ 定位性能(Accuracy:0.88 ± 0.03;AUC:0.73 ± 0.03),远远超过任何基线方法。考虑到队列中 EZ 位置和扫描仪类型的变化,这一性能是值得注意的。

结论

我们的结果强调了使用 DeepEZ 作为药物难治性癫痫的准确、非侵入性治疗计划工具的潜力。

意义

虽然之前的 EZ 定位工作集中在识别局部异常特征上,但越来越多的证据表明癫痫发作会影响大脑中的区域间连接。DeepEZ 允许临床医生从无创成像中利用这些信息,这些信息可以很容易地整合到现有的临床工作流程中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecdd/9841829/859851c43ac8/nihms-1860979-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验