Suppr超能文献

同轴非均匀分布高光谱成像系统的研制与验证。

Development and verification of the coaxial heterogeneous hyperspectral imaging system.

机构信息

Institute of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

出版信息

Rev Sci Instrum. 2022 Jun 1;93(6):063105. doi: 10.1063/5.0088474.

Abstract

A hyperspectral imaging system (HIS) is a helpful tool that acquires spatial and spectral information from a target. This study developed a coaxial heterogeneous HIS (CHHIS) to collect spectral images with wavelengths ranging from 400 to 1700 nm. In this system, a visible (VIS) spectrometer and a short-wave infrared (SWIR) spectrometer are combined with a coaxial optical path to share the same field of view. This structure reduces the complexity of spatial registration and maintains the scanning duration of two spectrometers as that of a single spectrometer. The spectrometers are also replaceable for extending the detecting spectral range of the system. The calibration methodologies, including spatial correction, spectral calibration, and reflectance calibration, were developed for this system. The signal-to-noise ratio of VIS and SWIR spectrometers in the CHHIS was up to 40 and 60 dB when the exposure time of the VIS and SWIR imaging sensors was 1000 and 10 ms, respectively. When the target distance was at 600 mm, the spatial error of VIS and SWIR images in the scanning direction was less than 1 pixel; these results proved that the system was stable.

摘要

一种高光谱成像系统(HIS)是一种有用的工具,可从目标获取空间和光谱信息。本研究开发了一种共轴非均匀 HIS(CHHIS),用于采集波长范围为 400 至 1700nm 的光谱图像。在该系统中,将可见(VIS)光谱仪和短波红外(SWIR)光谱仪与共轴光路相结合,以共享相同的视场。这种结构减少了空间配准的复杂性,并保持了两个光谱仪的扫描持续时间与单个光谱仪相同。还可以更换光谱仪以扩展系统的检测光谱范围。为该系统开发了校准方法,包括空间校正、光谱校准和反射率校准。当 VIS 和 SWIR 成像传感器的曝光时间分别为 1000 和 10ms 时,CHHIS 中的 VIS 和 SWIR 光谱仪的信噪比高达 40 和 60dB。当目标距离为 600mm 时,扫描方向上 VIS 和 SWIR 图像的空间误差小于 1 像素;这些结果证明了系统的稳定性。

相似文献

1
Development and verification of the coaxial heterogeneous hyperspectral imaging system.
Rev Sci Instrum. 2022 Jun 1;93(6):063105. doi: 10.1063/5.0088474.
2
Automated model-based calibration of short-wavelength infrared (SWIR) imaging spectrographs.
Appl Spectrosc. 2012 Oct;66(10):1128-35. doi: 10.1366/12-06618.
3
Polarizer-Free AOTF-Based SWIR Hyperspectral Imaging for Biomedical Applications.
Sensors (Basel). 2020 Aug 8;20(16):4439. doi: 10.3390/s20164439.
6
7
Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Oct 5;239:118488. doi: 10.1016/j.saa.2020.118488. Epub 2020 May 16.
10
A Snapshot Imaging Spectrometer Based on Uniformly Distributed-Slit Array (UDA).
Sensors (Basel). 2022 Apr 21;22(9):3206. doi: 10.3390/s22093206.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验