Beckman Laser Institute & Medical Clinic, University of California - Irvine, Irvine, CA, USA.
Department of Biomedical Engineering, University of California - Irvine, Irvine, CA, USA.
Lasers Med Sci. 2022 Oct;37(8):3203-3211. doi: 10.1007/s10103-022-03598-w. Epub 2022 Jul 2.
There is increasing interest in developing a minimally invasive imaging modality to safely evaluate dynamic microscopic changes of the olfactory mucosa and cribriform foramina. Herein, we utilized three-dimensional (3D) optical coherence tomography (OCT) to characterize the ex vivo stratified substructure of olfactory mucosa in rabbits and create 3D reconstructed images of olfactory foramina. Olfactory mucosa and cribriform plates from four New Zealand White rabbits were dissected and imaged using two swept-source OCT systems: (1) 1.3-µm (μm) center wavelength, 100-nm bandwidth, 200-kHz sweep rate, and (2) 1.7-μm center wavelength, 120-nm bandwidth, 90-kHz sweep rate. Volumetric OCT images were compiled to create a 3D reconstruction of the cribriform plate. The ability of OCT to distinguish the olfactory mucosa substructure and foramina was compared to histology. To estimate imaging penetration depth of each system, the first-order exponential decays of depth-resolved intensity were calculated and compared using a paired t-test. Three-dimensional OCT depicted the stratified layered structures within the olfactory mucosa correlating with histology. The epithelium and lamina propria were measured to be 32 μm and 107 μm in 1.3-μm OCT compared to 30 μm and 105 μm in histology. Olfactory foramina were visualized via 3D reconstruction. The 1.7-μm system provided greater depth penetration compared to the 1.3-μm system, allowing for improved foramina visualization. We have shown that OCT can be used to image non-pathologic olfactory mucosa and foramina. Implications for this work include diagnostic and therapeutic potentials for neurorhinological and neurodegenerative diseases.
人们越来越感兴趣的是开发一种微创成像方式,以安全地评估嗅黏膜和筛板孔的动态微观变化。在此,我们利用三维(3D)光学相干断层扫描(OCT)来描述兔的嗅黏膜分层亚结构,并创建嗅板孔的 3D 重建图像。使用两种扫频源 OCT 系统对来自四只新西兰白兔的嗅黏膜和筛板进行解剖和成像:(1)1.3μm 中心波长,100nm 带宽,200kHz 扫描速率;(2)1.7μm 中心波长,120nm 带宽,90kHz 扫描速率。对体积 OCT 图像进行编译,以创建筛板的 3D 重建。将 OCT 区分嗅黏膜亚结构和孔的能力与组织学进行了比较。为了估计每个系统的成像穿透深度,使用配对 t 检验计算并比较了深度分辨强度的一阶指数衰减。3D-OCT 描绘了与组织学相关的嗅黏膜分层结构。上皮和固有层在 1.3μm OCT 中分别测量为 32μm 和 107μm,而在组织学中分别测量为 30μm 和 105μm。通过 3D 重建可视化嗅板孔。与 1.3μm 系统相比,1.7μm 系统提供了更大的深度穿透,从而可以更好地观察孔。我们已经表明,OCT 可用于成像非病理性嗅黏膜和孔。这项工作的意义包括神经鼻科学和神经退行性疾病的诊断和治疗潜力。