Suppr超能文献

一种用于高效污染物净化的机器人平台。

A Robot Platform for Highly Efficient Pollutant Purification.

作者信息

Wang Haocheng, Yu Shimin, Liao Junjie, Qing Xudong, Sun Daxing, Ji Fengtong, Song Wenping, Wang Lin, Li Tianlong

机构信息

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.

The Seventh Oil Production Plant of Changqing Oilfield Company, Xi'an, China.

出版信息

Front Bioeng Biotechnol. 2022 Jun 17;10:903219. doi: 10.3389/fbioe.2022.903219. eCollection 2022.

Abstract

In this study, we propose a highly efficient robot platform for pollutant adsorption. This robot system consists of a flapping-wing micro aircraft (FWMA) for long-distance transportation and delivery and cost-effective multifunctional Janus microrobots for pollutant purification. The flapping-wing micro air vehicle can hover for 11.3 km with a flapping frequency of approximately 15 Hz, fly forward up to 31.6 km/h, and drop microrobots to a targeted destination. The Janus microrobot, which is composed of a silica microsphere, nickel layer, and hydrophobic layer, is used to absorb the oil and process organic pollutants. These Janus microrobots can be propelled fast up to 9.6 body lengths per second, and on-demand speed regulation and remote navigation are manageable. These Janus microrobots can continuously carry oil droplets in aqueous environments under the control of a uniform rotating magnetic field. Because of the fluid dynamics induced by the Janus microrobots, a highly efficient removal of Rhodamine B is accomplished. This smart robot system may open a door for pollutant purification.

摘要

在本研究中,我们提出了一种用于污染物吸附的高效机器人平台。该机器人系统由用于长距离运输和投递的扑翼微型飞行器(FWMA)以及用于污染物净化的经济高效的多功能Janus微型机器人组成。扑翼微型飞行器能够以约15Hz的扑翼频率悬停11.3千米,向前飞行速度可达31.6千米/小时,并将微型机器人投放至目标地点。由二氧化硅微球、镍层和疏水层组成的Janus微型机器人用于吸收油污并处理有机污染物。这些Janus微型机器人每秒可快速推进多达9.6个身体长度,并且可以进行按需速度调节和远程导航。在均匀旋转磁场的控制下,这些Janus微型机器人能够在水环境中持续携带油滴。由于Janus微型机器人引起的流体动力学作用,实现了对罗丹明B的高效去除。这种智能机器人系统可能为污染物净化打开一扇大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c84d/9247352/720ea6415b3a/fbioe-10-903219-g001.jpg

相似文献

1
A Robot Platform for Highly Efficient Pollutant Purification.
Front Bioeng Biotechnol. 2022 Jun 17;10:903219. doi: 10.3389/fbioe.2022.903219. eCollection 2022.
2
Swarming Magnetically Navigated Indigo-Based Hydrophobic Microrobots for Oil Removal.
ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45545-45552. doi: 10.1021/acsami.2c09527. Epub 2022 Sep 27.
3
Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.
Nanomaterials (Basel). 2019 Nov 22;9(12):1672. doi: 10.3390/nano9121672.
4
Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium.
J Mater Chem B. 2022 Oct 19;10(40):8235-8243. doi: 10.1039/d2tb01367c.
7
Soft Magnetic Microrobots for Photoactive Pollutant Removal.
Small Methods. 2023 Jan;7(1):e2201014. doi: 10.1002/smtd.202201014. Epub 2022 Nov 21.
8
Shape Engineering of TiO Microrobots for "On-the-Fly" Optical Brake.
Small. 2022 Mar;18(10):e2106271. doi: 10.1002/smll.202106271. Epub 2021 Dec 18.
9
Five in One: Multi-Engine Highly Integrated Microrobot.
Small Methods. 2023 Oct;7(10):e2300390. doi: 10.1002/smtd.202300390. Epub 2023 Jul 14.
10
Self-propelled activated carbon Janus micromotors for efficient water purification.
Small. 2015 Jan 27;11(4):499-506. doi: 10.1002/smll.201402215. Epub 2014 Sep 10.

引用本文的文献

2
Micro/nanorobots for remediation of water resources and aquatic life.
Front Bioeng Biotechnol. 2023 Nov 9;11:1312074. doi: 10.3389/fbioe.2023.1312074. eCollection 2023.
3
Acoustic-propelled micro/nanomotors and nanoparticles for biomedical research, diagnosis, and therapeutic applications.
Front Bioeng Biotechnol. 2023 Oct 19;11:1276485. doi: 10.3389/fbioe.2023.1276485. eCollection 2023.
4
Construction of micro-nano robots: living cells and functionalized biological cell membranes.
Front Bioeng Biotechnol. 2023 Sep 12;11:1277964. doi: 10.3389/fbioe.2023.1277964. eCollection 2023.
5
Four-Dimensional Micro/Nanorobots via Laser Photochemical Synthesis towards the Molecular Scale.
Micromachines (Basel). 2023 Aug 24;14(9):1656. doi: 10.3390/mi14091656.
6
The application of nanomedicine in clinical settings.
Front Bioeng Biotechnol. 2023 Jun 27;11:1219054. doi: 10.3389/fbioe.2023.1219054. eCollection 2023.
7
Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens.
Micromachines (Basel). 2022 Oct 19;13(10):1780. doi: 10.3390/mi13101780.

本文引用的文献

1
Magnetic Microdimer as Mobile Meter for Measuring Plasma Glucose and Lipids.
Front Bioeng Biotechnol. 2021 Nov 26;9:779632. doi: 10.3389/fbioe.2021.779632. eCollection 2021.
2
ZnO-based micromotors fueled by CO: the first example of self-reorientation-induced biomimetic chemotaxis.
Natl Sci Rev. 2021 Apr 20;8(11):nwab066. doi: 10.1093/nsr/nwab066. eCollection 2021 Nov.
3
Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors.
ACS Nano. 2021 Mar 23;15(3):5118-5128. doi: 10.1021/acsnano.0c10269. Epub 2021 Mar 9.
5
Magnetically actuated microrobots as a platform for stem cell transplantation.
Sci Robot. 2019 May 29;4(30). doi: 10.1126/scirobotics.aav4317.
6
A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines .
Sci Robot. 2019 Jul 31;4(32). doi: 10.1126/scirobotics.aax0613. Epub 2019 Jul 24.
7
8
Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.
Nanomaterials (Basel). 2019 Nov 22;9(12):1672. doi: 10.3390/nano9121672.
9
Radioactive Uranium Preconcentration Self-Propelled Autonomous Microrobots Based on Metal-Organic Frameworks.
ACS Nano. 2019 Oct 22;13(10):11477-11487. doi: 10.1021/acsnano.9b04960. Epub 2019 Oct 8.
10
Microswimmers with Heat Delivery Capacity for 3D Cell Spheroid Penetration.
ACS Nano. 2019 Oct 22;13(10):12192-12205. doi: 10.1021/acsnano.9b06869. Epub 2019 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验