Tao Yufeng, Lin Liansheng, Ren Xudong, Wang Xuejiao, Cao Xia, Gu Heng, Ye Yunxia, Ren Yunpeng, Zhang Zhiming
Institute of Micro-Nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang 212013, China.
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Micromachines (Basel). 2023 Aug 24;14(9):1656. doi: 10.3390/mi14091656.
Miniaturized four-dimensional (4D) micro/nanorobots denote a forerunning technique associated with interdisciplinary applications, such as in embeddable labs-on-chip, metamaterials, tissue engineering, cell manipulation, and tiny robotics. With emerging smart interactive materials, static micro/nanoscale architectures have upgraded to the fourth dimension, evincing time-dependent shape/property mutation. Molecular-level 4D robotics promises complex sensing, self-adaption, transformation, and responsiveness to stimuli for highly valued functionalities. To precisely control 4D behaviors, current-laser-induced photochemical additive manufacturing, such as digital light projection, stereolithography, and two-photon polymerization, is pursuing high-freeform shape-reconfigurable capacities and high-resolution spatiotemporal programming strategies, which challenge multi-field sciences while offering new opportunities. Herein, this review summarizes the recent development of micro/nano 4D laser photochemical manufacturing, incorporating active materials and shape-programming strategies to provide an envisioning of these miniaturized 4D micro/nanorobots. A comparison with other chemical/physical fabricated micro/nanorobots further explains the advantages and potential usage of laser-synthesized micro/nanorobots.
微型四维(4D)微纳机器人代表了一种与跨学科应用相关的前沿技术,例如可嵌入的芯片实验室、超材料、组织工程、细胞操作和微型机器人技术。随着新型智能交互材料的出现,静态微纳尺度结构已升级到第四维,呈现出随时间变化的形状/属性突变。分子水平的4D机器人技术有望实现复杂的传感、自适应、转变以及对刺激的响应,以实现高价值功能。为了精确控制4D行为,当前激光诱导光化学增材制造,如数字光投影、立体光刻和双光子聚合,正在追求高自由形式形状可重构能力和高分辨率时空编程策略,这在挑战多领域科学的同时也提供了新机遇。在此,本综述总结了微纳4D激光光化学制造的最新进展,结合活性材料和形状编程策略,以展望这些微型4D微纳机器人。与其他化学/物理制造的微纳机器人的比较进一步解释了激光合成微纳机器人的优势和潜在用途。