Suppr超能文献

推文社区重要性度量的排名:在从日本新冠疫情推文提取关键词中的应用。

Ranking of Importance Measures of Tweet Communities: Application to Keyword Extraction From COVID-19 Tweets in Japan.

作者信息

Harakawa Ryosuke, Iwahashi Masahiro

机构信息

Department of ElectricalElectronics and Information EngineeringNagaoka University of Technology Nagaoka 940-2188 Japan.

出版信息

IEEE Trans Comput Soc Syst. 2021 Mar 17;8(4):1030-1041. doi: 10.1109/TCSS.2021.3063820. eCollection 2021 Aug.

Abstract

This article presents a method that detects tweet communities with similar topics and ranks the communities by . By identifying the tweet communities that have high importance measures, it is possible for users to easily find important information about the coronavirus disease (COVID-19). Specifically, we first construct a community network, whose nodes are tweet communities obtained by applying a community detection method to a tweet network. The community network is constructed based on textual similarities between tweet communities and sizes of tweet communities. Second, we apply algorithms for calculating centrality to the community network. Because the obtained centrality is based on tweet community sizes as well, we call it the importance measure in distinction to conventional centrality. The importance measure can simultaneously evaluate the importance of topics in the entire data set and occupancy (or dominance) of tweet communities in the network structure. We conducted experiments by collecting Japanese tweets about COVID-19 from March 1, 2020 to May 15, 2020. The results show that the proposed method is able to extract keywords that have a high correlation with the number of people infected with COVID-19 in Japan. Because users can browse the keywords from a small number of central tweet communities, quick and easy understanding of important information becomes feasible.

摘要

本文提出了一种检测具有相似主题的推文社区并对这些社区进行排名的方法。通过识别具有高重要性度量的推文社区,用户能够轻松找到有关冠状病毒病(COVID - 19)的重要信息。具体而言,我们首先构建一个社区网络,其节点是通过将社区检测方法应用于推文网络而获得的推文社区。该社区网络是基于推文社区之间的文本相似度和推文社区的规模构建的。其次,我们将计算中心性的算法应用于社区网络。由于所获得的中心性也是基于推文社区规模的,我们将其称为重要性度量,以区别于传统的中心性。该重要性度量可以同时评估整个数据集中主题的重要性以及推文社区在网络结构中的占有率(或主导地位)。我们通过收集2020年3月1日至2020年5月15日期间关于COVID - 19的日语推文进行了实验。结果表明,所提出的方法能够提取出与日本COVID - 19感染人数具有高度相关性的关键词。因为用户可以从少数核心推文社区浏览这些关键词,所以快速轻松地理解重要信息变得可行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/739c/8545007/f4567a9e4667/harak1-3063820.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验