Feleki Benjamin T, Bouwer Ricardo K M, Zardetto Valerio, Wienk Martijn M, Janssen René A J
Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Tata Steel, Research and Development, Surface Engineering-Coating Development, IJmuiden 1970 CA, The Netherlands.
ACS Appl Energy Mater. 2022 Jun 27;5(6):6709-6715. doi: 10.1021/acsaem.2c00291. Epub 2022 Jun 14.
An efficient substrate-configuration p-i-n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C and atomic layer deposited SnO layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p-i-n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C layer, the Ti bottom electrode, and reflection from the MgF coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode.
一种高效的衬底结构p-i-n金属卤化物钙钛矿太阳能电池(PSC)在聚合物涂层钢衬底上制备而成。优化后的电池采用底部Ti电极,其上涂覆有一层薄的氧化铟锡(ITO)中间层,该中间层覆盖有自组装的[2-(9-咔唑-9-基)乙基]膦酸单分子层作为空穴选择性接触层。采用三阳离子钙钛矿作为吸收层。热蒸发的C层和原子层沉积的SnO层用于形成电子选择性接触层。电池使用带有抗反射MgF涂层的ITO顶部电极。在聚合物涂层钢衬底上制备的优化电池的功率转换效率达到16.5%,接近采用类似堆叠设计的p-i-n参考超衬底结构电池18.4%的效率。光学模拟表明,剩余的光学损失几乎等量地归因于ITO顶部电极、C层、Ti底部电极对光的吸收以及MgF涂层的反射。然而,主要损失在于填充因子,这是由于顶部ITO电极的薄层电阻增加所致。