Suppr超能文献

使用普尔凯特三角对土耳其人群进行性别估计:三维计算机断层扫描(3D-CT)的虚拟方法。

Sex estimation in a Turkish population using Purkait's triangle: a virtual approach by 3-dimensional computed tomography (3D-CT).

作者信息

García-Donas Julieta G, Ors Suna, Inci Ercan, Kranioti Elena F, Ekizoglu Oguzhan, Moghaddam Negahnaz, Grabherr Silke

机构信息

Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee, Scotland, UK.

Department of Radiology, Bakirkoy Training and Research Hospital, Istanbul, Turkey.

出版信息

Forensic Sci Res. 2021 Apr 27;7(2):97-105. doi: 10.1080/20961790.2021.1905203. eCollection 2022.

Abstract

Sex estimation is considered one of the first steps in the forensic identification process. Morphological and morphometrical differences between males and females have been used as means for morphoscopic and metric methods on both cranial and postcranial skeletal elements. When dry skeletal elements are not available, virtual data can be used as a substitute. The present research explores 3-dimensional (3D) scans from a Turkish population to test a sex estimation method developed by Purkait (2005). Overall, 296 individuals were used in this study (158 males and 138 females). Purkait's triangle parameters were measured on computed tomography (CT) scans obtained from both right and left femora of each patient at the Bakirkoy Dr. Sadi Konuk Training Research Hospital (Istanbul, Turkey). Intra- and inter-observer errors were assessed for all variables through technical error of measurements analysis. Bilateral asymmetry and sex differences were evaluated using parametric and non-parametric statistical approaches. Univariate and multivariate discriminant function analyses were then conducted. Observer errors demonstrated an overall agreement within and between experts, as indicated by technical error of measurement (TEM) results. No bilateral asymmetries were reported, and all parameters demonstrated a statistically significant difference between males and females. Fourteen discriminant models were generated by applying single and combined parameters, producing a total correct sex classification ranging from 78.4% to 92.6%. In addition, over 67% of the total sample was accurately classified, with 95% or greater posterior probabilities. Our study demonstrates the feasibility of 3D sex estimation using Purkait's triangle on a Turkish population, with accuracy rates comparable to those reported in other populations. This is the first attempt to apply this method on virtual data and although further validation and standardisation are recommended for its application on dry bone, this research constitutes a significant contribution to the development of population-specific standards when only virtual data are available.Key pointsCT analysis using Purkait's triangle is a suitable tool for assessment of sex in unidentified individuals.The best overall estimation rate was achieved with the F11 model, with around 92% of accuracy.The results suggested 78.4% to 92.6% correct sex identification rates.More research is needed to expand the sample set and verify the results.

摘要

性别估计被认为是法医鉴定过程的首要步骤之一。男性和女性之间的形态学和形态测量学差异已被用作颅部和颅后骨骼元素的形态观察和测量方法的手段。当没有干燥的骨骼元素时,可以使用虚拟数据作为替代。本研究探索了来自土耳其人群的三维(3D)扫描数据,以测试Purkait(2005年)开发的一种性别估计方法。总体而言,本研究共使用了296名个体(158名男性和138名女性)。在土耳其伊斯坦布尔巴基尔柯伊萨迪·科努克培训研究医院,对每位患者左右股骨的计算机断层扫描(CT)图像测量Purkait三角参数。通过测量技术误差分析评估所有变量的观察者内和观察者间误差。使用参数和非参数统计方法评估双侧不对称性和性别差异。然后进行单变量和多变量判别函数分析。测量技术误差(TEM)结果表明,观察者误差在专家内部和专家之间总体一致。未报告双侧不对称性,所有参数在男性和女性之间均显示出统计学上的显著差异。通过应用单个参数和组合参数生成了14个判别模型,总正确性别分类率在78.4%至92.6%之间。此外,超过67%的总样本被准确分类,后验概率为95%或更高。我们的研究证明了在土耳其人群中使用Purkait三角进行三维性别估计的可行性,准确率与其他人群报告的准确率相当。这是首次尝试将该方法应用于虚拟数据,尽管建议对其在干燥骨骼上的应用进行进一步验证和标准化,但本研究在仅可获得虚拟数据时对特定人群标准的制定做出了重大贡献。要点使用Purkait三角的CT分析是评估身份不明个体性别的合适工具。F11模型实现了最佳总体估计率,准确率约为92%。结果表明性别识别正确率在78.4%至92.6%之间。需要更多研究来扩大样本集并验证结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0098/9246024/f6fffa205ee7/TFSR_A_1905203_F0001_C.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验