Suppr超能文献

基于机器学习的 CT 扫描中皮质醇分泌性与非分泌性肾上腺意外瘤纹理分析。

Machine Learning-Based Texture Analysis in the Characterization of Cortisol Secreting vs. Non-Secreting Adrenocortical Incidentalomas in CT Scan.

机构信息

Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy.

Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Rome, Italy.

出版信息

Front Endocrinol (Lausanne). 2022 Jun 17;13:873189. doi: 10.3389/fendo.2022.873189. eCollection 2022.

Abstract

New radioimaging techniques, exploiting the quantitative variables of imaging, permit to identify an hypothetical pathological tissue. We have applied this potential in a series of 72 adrenal incidentalomas (AIs) followed at our center, subdivided in functioning and non-functioning using laboratory findings. Each AI was studied in the preliminary non-contrast phase with a specific software (Mazda), surrounding a region of interest within each lesion. A total of 314 features were extrapolated. Mean and standard deviations of features were obtained and the difference in means between the two groups was statistically analyzed. Receiver Operating Characteristic (ROC) curves were used to identify an optimal cutoff for each variable and a prediction model was constructed multivariate logistic regression with backward and stepwise selection. A 11-variable prediction model was constructed, and a ROC curve was used to differentiate patients with high probability of functioning AI. Using a threshold value of >-275.147, we obtained a sensitivity of 93.75% and a specificity of 100% in diagnosing functioning AI. On the basis of these results, computed tomography (CT) texture analysis appears a promising tool in the diagnostic definition of AIs.

摘要

新的放射影像学技术利用影像学的定量变量,能够识别出假设的病理组织。我们在本中心对一系列 72 例偶然发现的肾上腺瘤(AIs)进行了研究,这些病例根据实验室结果分为功能性和非功能性。使用特定的软件(Mazda),对每个 AI 在初步的非对比阶段进行研究,在每个病变内的感兴趣区域周围提取 314 个特征。得出特征的平均值和标准差,并对两组之间的平均值差异进行统计学分析。接收者操作特征(ROC)曲线用于确定每个变量的最佳截止值,并使用向后和逐步选择的多变量逻辑回归构建预测模型。构建了一个 11 变量的预测模型,并使用 ROC 曲线来区分功能性 AI 可能性高的患者。使用阈值>-275.147,我们在诊断功能性 AI 时获得了 93.75%的敏感性和 100%的特异性。基于这些结果,计算机断层扫描(CT)纹理分析似乎是诊断 AIs 的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac18/9248203/dae72869a9c7/fendo-13-873189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验