Suppr超能文献

CT 纹理分析和机器学习可提高肾上腺转移瘤患者消融后的预后预测:概念验证。

CT Texture Analysis and Machine Learning Improve Post-ablation Prognostication in Patients with Adrenal Metastases: A Proof of Concept.

机构信息

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRB #290, Boston, MA, 02114, USA.

Department of Radiology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.

出版信息

Cardiovasc Intervent Radiol. 2019 Dec;42(12):1771-1776. doi: 10.1007/s00270-019-02336-0. Epub 2019 Sep 5.

Abstract

INTRODUCTION

To assess the performance of pre-ablation computed tomography texture features of adrenal metastases to predict post-treatment local progression and survival in patients who underwent ablation using machine learning as a prediction tool.

MATERIALS AND METHODS

This is a pilot retrospective study of patients with adrenal metastases undergoing ablation. Clinical variables were collected. Thirty-two texture features were extracted from manually segmented adrenal tumors. A univariate cox proportional hazard model was used for prediction of local progression and survival. A linear support vector machine (SVM) learning technique was applied to the texture features and clinical variables, with leave-one-out cross-validation. Receiver operating characteristic analysis and the area under the curve (AUC) were used to assess performance between using clinical variables only versus clinical variables and texture features.

RESULTS

Twenty-one patients (61% male, age 64.1 ± 10.3 years) were included. Mean time to local progression was 29.8 months. Five texture features exhibited association with progression (p < 0.05). The SVM model based on clinical variables alone resulted in an AUC of 0.52, whereas the SVM model that included texture features resulted in an AUC 0.93 (p = 0.01). Mean overall survival was 35 months. Fourteen texture features were associated with survival in the univariate model (p < 0.05). While the trained SVM model based on clinical variables resulted in an AUC of 0.68, the SVM model that included texture features resulted in an AUC of 0.93 (p = 0.024).

DISCUSSION

Pre-ablation texture analysis and machine learning improve local tumor progression and survival prediction in patients with adrenal metastases who undergo ablation.

摘要

简介

本研究旨在评估肾上腺转移瘤消融前 CT 纹理特征在预测患者消融后局部进展和生存方面的性能,旨在将机器学习作为预测工具。

材料与方法

这是一项回顾性的、基于患者的研究,纳入了接受消融治疗的肾上腺转移瘤患者。收集了临床变量,并对肾上腺肿瘤进行手动分割,提取了 32 个纹理特征。采用单因素 Cox 比例风险模型预测局部进展和生存。采用线性支持向量机(SVM)学习技术对纹理特征和临床变量进行分析,采用留一法交叉验证。采用接受者操作特征分析和曲线下面积(AUC)评估仅使用临床变量与同时使用临床变量和纹理特征的预测性能。

结果

共纳入 21 例患者(61%为男性,年龄 64.1±10.3 岁)。局部进展的中位时间为 29.8 个月。5 个纹理特征与进展相关(p<0.05)。基于临床变量的 SVM 模型 AUC 为 0.52,而包含纹理特征的 SVM 模型 AUC 为 0.93(p=0.01)。总的中位生存时间为 35 个月。14 个纹理特征与单变量模型中的生存相关(p<0.05)。基于临床变量的训练 SVM 模型 AUC 为 0.68,而包含纹理特征的 SVM 模型 AUC 为 0.93(p=0.024)。

讨论

在接受消融治疗的肾上腺转移瘤患者中,消融前的纹理分析和机器学习可提高局部肿瘤进展和生存预测的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验