Suppr超能文献

一种使用加速度计和光电容积脉搏波描记术进行睡眠阶段分类的灵活深度学习架构。

A Flexible Deep Learning Architecture for Temporal Sleep Stage Classification Using Accelerometry and Photoplethysmography.

作者信息

Olsen Mads, Zeitzer Jamie M, Richardson Risa N, Davidenko Polina, Jennum Poul J, Sorensen Helge B D, Mignot Emmanuel

出版信息

IEEE Trans Biomed Eng. 2023 Jan;70(1):228-237. doi: 10.1109/TBME.2022.3187945. Epub 2022 Dec 26.

Abstract

Wrist-worn consumer sleep technologies (CST) that contain accelerometers (ACC) and photoplethysmography (PPG) are increasingly common and hold great potential to function as out-of-clinic (OOC) sleep monitoring systems. However, very few validation studies exist because raw data from CSTs are rarely made accessible for external use. We present a deep neural network (DNN) with a strong temporal core, inspired by U-Net, that can process multivariate time series inputs with different dimensionality to predict sleep stages (wake, light-, deep-, and REM sleep) using ACC and PPG signals from nocturnal recordings. The DNN was trained and tested on 3 internal datasets, comprising raw data both from clinical and wrist-worn devices from 301 recordings (PSG-PPG: 266, Wrist-worn PPG: 35). External validation was performed on a hold-out test dataset containing 35 recordings comprising only raw data from a wrist-worn CST. An accuracy = 0.71 ± 0.09, 0.76 ± 0.07, 0.73 ± 0.06, and κ = 0.58 ± 0.13, 0.64 ± 0.09, 0.59 ± 0.09 was achieved on the internal test sets. Our experiments show that spectral preprocessing yields superior performance when compared to surrogate-, feature-, raw data-based preparation. Combining both modalities produce the overall best performance, although PPG proved to be the most impactful and was the only modality capable of detecting REM sleep well. Including ACC improved model precision to wake and sleep metric estimation. Increasing input segment size improved performance consistently; the best performance was achieved using 1024 epochs (∼8.5 hrs.). An accuracy = 0.69 ± 0.13 and κ = 0.58 ± 0.18 was achieved on the hold-out test dataset, proving the generalizability and robustness of our approach to raw data collected with a wrist-worn CST.

摘要

包含加速度计(ACC)和光电容积脉搏波描记法(PPG)的腕戴式消费级睡眠技术(CST)越来越普遍,并且具有作为门诊外(OOC)睡眠监测系统的巨大潜力。然而,由于CST的原始数据很少可供外部使用,因此验证研究非常少。我们提出了一种受U-Net启发的具有强大时间核心的深度神经网络(DNN),它可以处理具有不同维度的多变量时间序列输入,以使用夜间记录中的ACC和PPG信号来预测睡眠阶段(清醒、浅睡眠、深睡眠和快速眼动睡眠)。DNN在3个内部数据集上进行了训练和测试,这些数据集包括来自301次记录的临床和腕戴式设备的原始数据(PSG-PPG:266次,腕戴式PPG:35次)。在一个仅包含来自腕戴式CST的原始数据的保留测试数据集上进行了外部验证。在内部测试集上的准确率分别为0.71±0.09、0.76±0.07、0.73±0.06,κ值分别为0.58±0.13、0.64±0.09、0.59±0.09。我们的实验表明,与基于替代数据、特征数据、原始数据的预处理相比,频谱预处理具有更好的性能。结合两种模式可产生总体最佳性能,尽管PPG被证明是最有影响力的,并且是唯一能够很好地检测快速眼动睡眠的模式。包含ACC提高了模型对清醒和睡眠指标估计的精度。增加输入段大小持续提高了性能;使用1024个轮次(约8.5小时)实现了最佳性能。在保留测试数据集上的准确率为0.69±0.13,κ值为0.58±0.18,证明了我们的方法对用腕戴式CST收集的原始数据的通用性和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验