Suppr超能文献

一种用于基于光电容积脉搏波描记术的可穿戴睡眠阶段分类的深度迁移学习方法。

A deep transfer learning approach for wearable sleep stage classification with photoplethysmography.

作者信息

Radha Mustafa, Fonseca Pedro, Moreau Arnaud, Ross Marco, Cerny Andreas, Anderer Peter, Long Xi, Aarts Ronald M

机构信息

Philips Research, Eindhoven, the Netherlands.

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

出版信息

NPJ Digit Med. 2021 Sep 15;4(1):135. doi: 10.1038/s41746-021-00510-8.

Abstract

Unobtrusive home sleep monitoring using wrist-worn wearable photoplethysmography (PPG) could open the way for better sleep disorder screening and health monitoring. However, PPG is rarely included in large sleep studies with gold-standard sleep annotation from polysomnography. Therefore, training data-intensive state-of-the-art deep neural networks is challenging. In this work a deep recurrent neural network is first trained using a large sleep data set with electrocardiogram (ECG) data (292 participants, 584 recordings) to perform 4-class sleep stage classification (wake, rapid-eye-movement, N1/N2, and N3). A small part of its weights is adapted to a smaller, newer PPG data set (60 healthy participants, 101 recordings) through three variations of transfer learning. Best results (Cohen's kappa of 0.65 ± 0.11, accuracy of 76.36 ± 7.57%) were achieved with the domain and decision combined transfer learning strategy, significantly outperforming the PPG-trained and ECG-trained baselines. This performance for PPG-based 4-class sleep stage classification is unprecedented in literature, bringing home sleep stage monitoring closer to clinical use. The work demonstrates the merit of transfer learning in developing reliable methods for new sensor technologies by reusing similar, older non-wearable data sets. Further study should evaluate our approach in patients with sleep disorders such as insomnia and sleep apnoea.

摘要

使用腕戴式光电容积脉搏波描记法(PPG)进行的非侵入式家庭睡眠监测可为更好的睡眠障碍筛查和健康监测开辟道路。然而,PPG很少被纳入具有多导睡眠图黄金标准睡眠注释的大型睡眠研究中。因此,训练数据密集型的先进深度神经网络具有挑战性。在这项工作中,首先使用一个包含心电图(ECG)数据的大型睡眠数据集(292名参与者,584次记录)训练一个深度循环神经网络,以进行4类睡眠阶段分类(清醒、快速眼动、N1/N2和N3)。通过三种迁移学习变体,将其一小部分权重应用于一个更小、更新的PPG数据集(60名健康参与者,101次记录)。采用领域和决策相结合的迁移学习策略取得了最佳结果(科恩kappa系数为0.65±0.11,准确率为76.36±7.57%),显著优于基于PPG训练和基于ECG训练的基线。这种基于PPG的4类睡眠阶段分类的性能在文献中是前所未有的,使家庭睡眠阶段监测更接近临床应用。这项工作展示了迁移学习在通过重用类似的、旧的非可穿戴数据集来开发新传感器技术可靠方法方面的优点。进一步的研究应评估我们在失眠和睡眠呼吸暂停等睡眠障碍患者中的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b96/8443610/8c1cfd1b72c4/41746_2021_510_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验