Suppr超能文献

微睡眠网络:用于移动终端实时睡眠分期的高效深度学习模型。

Micro SleepNet: efficient deep learning model for mobile terminal real-time sleep staging.

作者信息

Liu Guisong, Wei Guoliang, Sun Shuqing, Mao Dandan, Zhang Jiansong, Zhao Dechun, Tian Xuelong, Wang Xing, Chen Nanxi

机构信息

Department of Biomedical Engineering, Bioengineering College, Chongqing University, Chongqing, China.

Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.

出版信息

Front Neurosci. 2023 Jul 28;17:1218072. doi: 10.3389/fnins.2023.1218072. eCollection 2023.

Abstract

The real-time sleep staging algorithm that can perform inference on mobile devices without burden is a prerequisite for closed-loop sleep modulation. However, current deep learning sleep staging models have poor real-time efficiency and redundant parameters. We propose a lightweight and high-performance sleep staging model named Micro SleepNet, which takes a 30-s electroencephalography (EEG) epoch as input, without relying on contextual signals. The model features a one-dimensional group convolution with a kernel size of 1 × 3 and an Efficient Channel and Spatial Attention (ECSA) module for feature extraction and adaptive recalibration. Moreover, the model efficiently performs feature fusion using dilated convolution module and replaces the conventional fully connected layer with Global Average Pooling (GAP). These design choices significantly reduce the total number of model parameters to 48,226, with only approximately 48.95 Million Floating-point Operations per Second (MFLOPs) computation. The proposed model is conducted subject-independent cross-validation on three publicly available datasets, achieving an overall accuracy of up to 83.3%, and the Cohen Kappa is 0.77. Additionally, we introduce Class Activation Mapping (CAM) to visualize the model's attention to EEG waveforms, which demonstrate the model's ability to accurately capture feature waveforms of EEG at different sleep stages. This provides a strong interpretability foundation for practical applications. Furthermore, the Micro SleepNet model occupies approximately 100 KB of memory on the Android smartphone and takes only 2.8 ms to infer one EEG epoch, meeting the real-time requirements of sleep staging tasks on mobile devices. Consequently, our proposed model has the potential to serve as a foundation for accurate closed-loop sleep modulation.

摘要

能够在移动设备上无负担地进行推理的实时睡眠分期算法是闭环睡眠调节的前提条件。然而,当前的深度学习睡眠分期模型实时效率低下且参数冗余。我们提出了一种名为Micro SleepNet的轻量级高性能睡眠分期模型,该模型以30秒的脑电图(EEG)片段作为输入,不依赖上下文信号。该模型的特点是采用内核大小为1×3的一维分组卷积和高效通道与空间注意力(ECSA)模块进行特征提取和自适应重新校准。此外,该模型使用扩张卷积模块有效地进行特征融合,并用全局平均池化(GAP)取代传统的全连接层。这些设计选择显著减少了模型参数总数至48,226个,每秒仅约4895万次浮点运算(MFLOPs)。所提出的模型在三个公开可用数据集上进行了独立于受试者的交叉验证,总体准确率高达83.3%,Cohen Kappa系数为0.77。此外,我们引入类激活映射(CAM)来可视化模型对EEG波形的关注,这展示了模型在不同睡眠阶段准确捕捉EEG特征波形的能力。这为实际应用提供了强大的可解释性基础。此外,Micro SleepNet模型在安卓智能手机上占用约100KB内存,推断一个EEG片段仅需2.8毫秒,满足移动设备上睡眠分期任务的实时要求。因此,我们提出的模型有潜力作为准确闭环睡眠调节的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d798/10416229/d6d08c2c23a2/fnins-17-1218072-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验