Department of Artificial Intelligence, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, India.
Department of Radiodiagnosis, Mahatma Gandhi Medical College and Hospital (MGMCH), Jaipur, Rajasthan, India.
Sci Rep. 2022 Jul 4;12(1):11255. doi: 10.1038/s41598-022-15327-y.
Outcome prediction for individual patient groups is of paramount importance in terms of selection of appropriate therapeutic options, risk communication to patients and families, and allocating resource through optimum triage. This has become even more necessary in the context of the current COVID-19 pandemic. Widening the spectrum of predictor variables by including radiological parameters alongside the usually utilized demographic, clinical and biochemical ones can facilitate building a comprehensive prediction model. Automation has the potential to build such models with applications to time-critical environments so that a clinician will be able to utilize the model outcomes in real-time decision making at bedside. We show that amalgamation of computed tomogram (CT) data with clinical parameters (CP) in generating a Machine Learning model from 302 COVID-19 patients presenting to an acute care hospital in India could prognosticate the need for invasive mechanical ventilation. Models developed from CP alone, CP and radiologist derived CT severity score and CP with automated lesion-to-lung ratio had AUC of 0.87 (95% CI 0.85-0.88), 0.89 (95% CI 0.87-0.91), and 0.91 (95% CI 0.89-0.93), respectively. We show that an operating point on the ROC can be chosen to aid clinicians in risk characterization according to the resource availability and ethical considerations. This approach can be deployed in more general settings, with appropriate calibrations, to predict outcomes of severe COVID-19 patients effectively.
对于个体患者群体的预后预测,在选择适当的治疗选择、向患者和家属进行风险沟通以及通过最佳分诊分配资源方面至关重要。在当前 COVID-19 大流行的背景下,这一点变得更加必要。通过将放射学参数与通常使用的人口统计学、临床和生化参数一起纳入预测变量范围,可以更方便地构建综合预测模型。自动化有可能构建此类模型,并将其应用于时间关键型环境中,以便临床医生能够在床边实时决策中利用模型结果。我们表明,将 CT 数据与临床参数(CP)合并,从印度一家急症医院就诊的 302 名 COVID-19 患者中生成机器学习模型,可以预测需要进行有创机械通气的可能性。仅使用 CP、CP 和放射科医生得出的 CT 严重程度评分以及 CP 与自动病变与肺比生成的模型的 AUC 分别为 0.87(95%CI 0.85-0.88)、0.89(95%CI 0.87-0.91)和 0.91(95%CI 0.89-0.93)。我们表明,可以根据资源可用性和伦理考虑选择 ROC 上的一个工作点,以帮助临床医生进行风险特征描述。这种方法可以在更一般的环境中部署,通过适当的校准,有效地预测严重 COVID-19 患者的预后。