Suppr超能文献

用于抗击新冠疫情的机器学习综合综述

A Comprehensive Review of Machine Learning Used to Combat COVID-19.

作者信息

Gomes Rahul, Kamrowski Connor, Langlois Jordan, Rozario Papia, Dircks Ian, Grottodden Keegan, Martinez Matthew, Tee Wei Zhong, Sargeant Kyle, LaFleur Corbin, Haley Mitchell

机构信息

Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA.

Department of Geography and Anthropology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA.

出版信息

Diagnostics (Basel). 2022 Jul 31;12(8):1853. doi: 10.3390/diagnostics12081853.

Abstract

Coronavirus disease (COVID-19) has had a significant impact on global health since the start of the pandemic in 2019. As of June 2022, over 539 million cases have been confirmed worldwide with over 6.3 million deaths as a result. Artificial Intelligence (AI) solutions such as machine learning and deep learning have played a major part in this pandemic for the diagnosis and treatment of COVID-19. In this research, we review these modern tools deployed to solve a variety of complex problems. We explore research that focused on analyzing medical images using AI models for identification, classification, and tissue segmentation of the disease. We also explore prognostic models that were developed to predict health outcomes and optimize the allocation of scarce medical resources. Longitudinal studies were conducted to better understand COVID-19 and its effects on patients over a period of time. This comprehensive review of the different AI methods and modeling efforts will shed light on the role that AI has played and what path it intends to take in the fight against COVID-19.

摘要

自2019年疫情开始以来,冠状病毒病(COVID-19)对全球健康产生了重大影响。截至2022年6月,全球确诊病例超过5.39亿例,导致超过630万人死亡。机器学习和深度学习等人工智能(AI)解决方案在这场疫情中对COVID-19的诊断和治疗发挥了重要作用。在本研究中,我们回顾了为解决各种复杂问题而部署的这些现代工具。我们探讨了专注于使用人工智能模型分析医学图像以识别、分类和分割疾病组织的研究。我们还探讨了为预测健康结果和优化稀缺医疗资源分配而开发的预后模型。进行了纵向研究,以更好地了解COVID-19及其在一段时间内对患者的影响。对不同人工智能方法和建模工作的全面回顾将揭示人工智能在抗击COVID-19中所发挥的作用以及它打算采取的路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e95c/9406981/6c7e408b5b8a/diagnostics-12-01853-g001.jpg

相似文献

1
A Comprehensive Review of Machine Learning Used to Combat COVID-19.
Diagnostics (Basel). 2022 Jul 31;12(8):1853. doi: 10.3390/diagnostics12081853.
3
Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review.
JMIR Med Inform. 2021 Jan 11;9(1):e23811. doi: 10.2196/23811.
4
Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review.
Curr Top Med Chem. 2024;24(8):737-753. doi: 10.2174/0115680266282179240124072121.
6
A Systematic Review on the Use of AI and ML for Fighting the COVID-19 Pandemic.
IEEE Trans Artif Intell. 2021 Mar 1;1(3):258-270. doi: 10.1109/TAI.2021.3062771. eCollection 2020 Dec.
7
Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A Review.
Curr Med Imaging. 2021;17(12):1403-1418. doi: 10.2174/1573405617666210713113439.
8
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.
10
COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review.
Interdiscip Sci. 2021 Jun;13(2):153-175. doi: 10.1007/s12539-021-00431-w. Epub 2021 Apr 22.

引用本文的文献

1
Classification of the ICU Admission for COVID-19 Patients with Transfer Learning Models Using Chest X-Ray Images.
Diagnostics (Basel). 2025 Mar 26;15(7):845. doi: 10.3390/diagnostics15070845.
6
Institutional Strategies to Maintain and Grow Imaging Research During the COVID-19 Pandemic.
Acad Radiol. 2023 Apr;30(4):631-639. doi: 10.1016/j.acra.2022.12.045. Epub 2023 Jan 6.
7
COVID-19 CT-images diagnosis and severity assessment using machine learning algorithm.
Cluster Comput. 2023 Jan 24:1-16. doi: 10.1007/s10586-023-03972-5.
8
The Capacity of Artificial Intelligence in COVID-19 Response: A Review in Context of COVID-19 Screening and Diagnosis.
Diagnostics (Basel). 2022 Nov 25;12(12):2943. doi: 10.3390/diagnostics12122943.
9
Application of Deep Learning to IVC Filter Detection from CT Scans.
Diagnostics (Basel). 2022 Oct 13;12(10):2475. doi: 10.3390/diagnostics12102475.

本文引用的文献

1
Value and prognostic impact of a deep learning segmentation model of COVID-19 lung lesions on low-dose chest CT.
Res Diagn Interv Imaging. 2022 Mar;1:100003. doi: 10.1016/j.redii.2022.100003. Epub 2022 Mar 22.
4
Real-time COVID-19 detection over chest x-ray images in edge computing.
Comput Intell. 2022 Apr 30. doi: 10.1111/coin.12528.
6
An effective detection of COVID-19 using adaptive dual-stage horse herd bidirectional long short-term memory framework.
Int J Imaging Syst Technol. 2022 Jul;32(4):1049-1067. doi: 10.1002/ima.22747. Epub 2022 May 18.
7
COVIDx-US: An Open-Access Benchmark Dataset of Ultrasound Imaging Data for AI-Driven COVID-19 Analytics.
Front Biosci (Landmark Ed). 2022 Jun 24;27(7):198. doi: 10.31083/j.fbl2707198.
9
Multiclass Classification of Chest X-Ray Images for the Prediction of COVID-19 Using Capsule Network.
Comput Intell Neurosci. 2022 May 19;2022:6185013. doi: 10.1155/2022/6185013. eCollection 2022.
10
Real-Time Diagnosis System of COVID-19 Using X-Ray Images and Deep Learning.
IT Prof. 2021 Aug 19;23(4):57-62. doi: 10.1109/MITP.2020.3042379. eCollection 2021 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验