Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea.
Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
J Microbiol Biotechnol. 2022 Aug 28;32(8):1047-1053. doi: 10.4014/jmb.2205.05059. Epub 2022 Jul 4.
When , a glucose-specific phosphotransferase system (PTS) component, is deleted in , growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of -deficient C strain under anaerobic conditions. Genome sequencing revealed mutations in , which encodes a repressor of -acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of . We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.
当 ,一种葡萄糖特异性磷酸转移酶系统(PTS)成分,在 中缺失时,由于缺乏有效的葡萄糖运输,生长可能会严重不良。我们发现了一种新的 PTS 运输系统,它可以在厌氧条件下通过 - 缺陷 C 菌株的生长偶联实验进化来运输葡萄糖。基因组测序揭示了在进化后代菌株中,编码 -N-乙酰半乳糖胺(Aga)PTS 表达的阻遏物 的突变。RT-qPCR 分析表明,由于 的功能丧失,Aga PTS 基因的表达增加。我们通过遗传互补和厌氧发酵证实了有效的 Aga PTS 介导的葡萄糖摄取。我们讨论了在 菌株的不同遗传背景下发现新的葡萄糖转运蛋白的情况,以及混合酸发酵模式与葡萄糖转运速率之间的关系。