Suppr超能文献

利用纳米级形貌界面定制的轨道用于多功能胶体电流器件。

Tailoring matter orbitals mediated using a nanoscale topographic interface for versatile colloidal current devices.

机构信息

Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.

出版信息

Mater Horiz. 2022 Aug 30;9(9):2353-2363. doi: 10.1039/d2mh00523a.

Abstract

Conventional micro-particle manipulation technologies have been used for various biomedical applications using dynamics on a plane without vertical movement. In this case, irregular topographic structures on surfaces could be a factor that causes the failure of the intended control. Here, we demonstrated a novel colloidal particle manipulation mediated by the topographic effect generated by the "micro hill" and "surface gradient" around a micro-magnet. The magnetic landscape, matter orbital, created by periodically arranged circular micro-magnets, induces a symmetric orbit of magnetic particle flow under a rotating magnetic field. The topographic effect can break this symmetry of the energy distribution by controlling the distance between the source of the driving force and target particles by several nanometers on the surface morphology. The origin symmetric orbit of colloidal flow can be distorted by modifying the symmetry in the energy landscape at the switching point without changing the driving force. The enhancement of the magnetic effect of the micro-magnet array can lead to the recovery of the symmetry of the orbit. Also, this effect on the surfaces of on-chip-based devices configured by symmetry control was demonstrated for selective manipulation, trapping, recovery, and altering the direction using a time-dependent magnetic field. Hence, the developed technique could be used in various precise lab-on-a-chip applications, including where the topographic effect is required as an additional variable without affecting the existing control method.

摘要

传统的微粒子操控技术已经被应用于各种生物医学领域,这些应用都基于在一个没有垂直运动的平面上通过动力学来操控微粒子。在这种情况下,表面上不规则的地形结构可能会成为导致预期控制失败的一个因素。在这里,我们展示了一种通过由微磁体周围的“微丘”和“表面梯度”产生的地形效应来介导胶体粒子操控的新方法。周期性排列的圆形微磁铁所产生的磁景观和物质轨道会在旋转磁场下诱导出磁性粒子流的对称轨道。通过在表面形态上控制驱动力源和目标粒子之间的距离(几个纳米),可以打破这种能量分布的对称性。通过在切换点处修改能量景观中的对称性,而不改变驱动力,可以使胶体流的对称轨道发生扭曲。微磁铁阵列的磁效应增强可以导致轨道对称性的恢复。此外,还通过使用时变磁场来证明了这种基于对称性控制的片上芯片器件表面上的效果,以实现选择性操控、捕获、恢复和改变方向。因此,所开发的技术可以用于各种精密的片上实验室应用中,包括在需要地形效应作为附加变量的情况下,而不会影响现有的控制方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验