Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, China.
Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Taijiang District, Fuzhou, 350005, China.
Int J Comput Assist Radiol Surg. 2022 Oct;17(10):1923-1931. doi: 10.1007/s11548-022-02700-5. Epub 2022 Jul 6.
The gene mutation status of isocitrate dehydrogenase (IDH) in gliomas leads to a different prognosis. It is challenging to perform automated tumor segmentation and genotype prediction directly using label-deprived multimodal magnetic resonance (MR) images. We propose a novel framework that employs a domain adaptive mechanism to address this issue.
Multimodal domain adaptive segmentation (MDAS) framework was proposed to solve the gap issue in cross dataset model transfer. Image translation was used to adaptively align the multimodal data from two domains at the image level, and segmentation consistency loss was proposed to retain more pathological information through semantic constraints. The data distribution between the labeled public dataset and label-free target dataset was learned to achieve better unsupervised segmentation results on the target dataset. Then, the segmented tumor foci were used as a mask to extract the radiomics and deep features. And the subsequent prediction of IDH gene mutation status was conducted by training a random forest classifier. The prediction model does not need any expert segmented labels.
We implemented our method on the public BraTS 2019 dataset and 110 astrocytoma cases of grade II-IV brain tumors from our hospital. We obtained a Dice score of 77.41% for unsupervised tumor segmentation, a genotype prediction accuracy (ACC) of 0.7639 and an area under curve (AUC) of 0.8600. Experimental results demonstrate that our domain adaptive approach outperforms the methods utilizing direct transfer learning. The model using hybrid features gives better results than the model using radiomics or deep features alone.
Domain adaptation enables the segmentation network to achieve better performance, and the extraction of mixed features at multiple levels on the segmented region of interest ensures effective prediction of the IDH gene mutation status.
脑肿瘤中异柠檬酸脱氢酶(IDH)的基因突变状态导致不同的预后。直接使用无标签的多模态磁共振(MR)图像进行自动肿瘤分割和基因型预测具有挑战性。我们提出了一种新的框架,该框架采用域自适应机制来解决这个问题。
提出了多模态域自适应分割(MDAS)框架来解决跨数据集模型转移中的差距问题。图像翻译用于自适应地在图像级别对齐来自两个域的多模态数据,并且提出了分割一致性损失以通过语义约束保留更多的病理信息。学习标记的公共数据集和无标记目标数据集之间的数据分布,以在目标数据集上实现更好的无监督分割结果。然后,将分割的肿瘤焦点用作掩模以提取放射组学和深度特征。随后通过训练随机森林分类器来进行 IDH 基因突变状态的预测。预测模型不需要任何专家分割标签。
我们在公共 BraTS 2019 数据集和我们医院的 110 例 II-IV 级脑肿瘤星形细胞瘤病例上实现了我们的方法。我们获得了 77.41%的无监督肿瘤分割的 Dice 分数,0.7639 的基因型预测准确性(ACC)和 0.8600 的曲线下面积(AUC)。实验结果表明,我们的域自适应方法优于利用直接迁移学习的方法。使用混合特征的模型比仅使用放射组学或深度特征的模型具有更好的结果。
域自适应使分割网络能够实现更好的性能,并且在感兴趣的分割区域上提取多个层次的混合特征可确保有效预测 IDH 基因突变状态。