NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
Machine Intelligence and Robotics Research Group, School of Technology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Neuroimage. 2019 Jul 1;194:1-11. doi: 10.1016/j.neuroimage.2019.03.026. Epub 2019 Mar 19.
Recent advances in deep learning methods have redefined the state-of-the-art for many medical imaging applications, surpassing previous approaches and sometimes even competing with human judgment in several tasks. Those models, however, when trained to reduce the empirical risk on a single domain, fail to generalize when applied to other domains, a very common scenario in medical imaging due to the variability of images and anatomical structures, even across the same imaging modality. In this work, we extend the method of unsupervised domain adaptation using self-ensembling for the semantic segmentation task and explore multiple facets of the method on a small and realistic publicly-available magnetic resonance (MRI) dataset. Through an extensive evaluation, we show that self-ensembling can indeed improve the generalization of the models even when using a small amount of unlabeled data.
深度学习方法的最新进展重新定义了许多医学成像应用的最新技术水平,超越了以前的方法,有时甚至在几个任务中可以与人类判断相媲美。然而,当这些模型被训练以减少单一领域的经验风险时,当应用于其他领域时,它们无法泛化,这在医学成像中是一种非常常见的情况,因为即使在同一成像方式中,图像和解剖结构也存在很大的可变性。在这项工作中,我们将使用自集成的无监督域自适应方法扩展到语义分割任务,并在一个小型且真实的公共磁共振 (MRI) 数据集上探索该方法的多个方面。通过广泛的评估,我们表明即使使用少量未标记的数据,自集成也确实可以提高模型的泛化能力。