Suppr超能文献

坦桑尼亚阿鲁沙市妊娠期糖尿病高危妇女的简易识别方法。

Simple method for identification of women at risk of gestational diabetes mellitus in Arusha urban, Tanzania.

机构信息

Depertment of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, Morogoro, Tanzania.

School of Life Sciences, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.

出版信息

BMC Pregnancy Childbirth. 2022 Jul 6;22(1):545. doi: 10.1186/s12884-022-04838-1.

Abstract

BACKGROUND

Screening for gestational diabetes mellitus in Tanzania is challenged by limited resources. Therefore, this study aimed to develop a simple method for identification of women at risk of gestational diabetes mellitus in Arusha urban, Tanzania.

METHODS

This study used data from a cross sectional study, that was conducted between March and December 2018 in Arusha District involving 468 pregnant women who were not known to have diabetes before pregnancy. Urine glucose was tested using urine multistics and blood glucose levels by Gluco-Plus™ and diagnosed in accordance with the World Health Organization's criteria. Anthropometrics were measured using standard procedures and maternal characteristics were collected through face-to-face interviews using a questionnaire with structured questions. Univariate analysis assessed individual variables association with gestational diabetes mellitus where variables with p-value of < 0.05 were included in multivariable analysis and predictors with p-value < 0.1 remained in the final model. Each variable was scored based on its estimated coefficients and risk scores were calculated by multiplying the corresponding coefficients by ten to get integers. The model's performance was assessed using c-statistic. Data were analyzed using Statistical Package for Social Science™.

RESULTS

The risk score included body fat ≥ 38%, delivery to macrosomic babies, mid-upper arm circumference ≥ 28 cm, and family history of type 2 diabetes mellitus. The score correctly identified 98% of women with gestational diabetes with an area under the receiver operating characteristic curve of 0.97 (95% CI 0.96-0.99, p < 0.001), sensitivity of 0.98, and specificity of 0.46.

CONCLUSION

The developed screening tool is highly sensitive and correctly differentiates women with and without gestational diabetes mellitus in a Tanzanian sub-population.

摘要

背景

坦桑尼亚的妊娠期糖尿病筛查受到资源有限的挑战。因此,本研究旨在开发一种简单的方法,用于识别坦桑尼亚阿鲁沙市区妊娠期糖尿病高危妇女。

方法

本研究使用了横断面研究的数据,该研究于 2018 年 3 月至 12 月在阿鲁沙区进行,涉及 468 名怀孕前未被诊断为糖尿病的孕妇。使用尿多项检测仪检测尿糖,使用 Gluco-Plus™检测血糖,并根据世界卫生组织的标准进行诊断。使用标准程序测量人体测量学指标,并通过使用带有结构化问题的问卷进行面对面访谈收集产妇特征。单变量分析评估了个体变量与妊娠期糖尿病的关联,其中 p 值 < 0.05 的变量纳入多变量分析,p 值 < 0.1 的预测因子保留在最终模型中。每个变量都根据其估计系数进行评分,并通过将相应系数乘以 10 得到整数来计算风险评分。使用 c 统计量评估模型的性能。使用社会科学统计软件包进行数据分析。

结果

风险评分包括体脂≥38%、分娩巨大儿、中上臂周长≥28cm 和 2 型糖尿病家族史。该评分正确识别了 98%的妊娠期糖尿病妇女,受试者工作特征曲线下面积为 0.97(95%置信区间 0.96-0.99,p<0.001),灵敏度为 0.98,特异性为 0.46。

结论

在坦桑尼亚亚人群中,开发的筛查工具具有高度的敏感性,可以正确区分妊娠期糖尿病和非妊娠期糖尿病的妇女。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b8/9258134/881dcf77268f/12884_2022_4838_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验