Suppr超能文献

利用下一代测序方法进行 bulk segregant analysis 中 QTL 鉴定的九种统计量的评估。

Evaluation of nine statistics to identify QTLs in bulk segregant analysis using next generation sequencing approaches.

机构信息

DIADE, Institut de Recherche Pour Le Développement, Université de Montpellier, Montpellier, France.

出版信息

BMC Genomics. 2022 Jul 6;23(1):490. doi: 10.1186/s12864-022-08718-y.

Abstract

BACKGROUND

Bulk segregant analysis (BSA) combined with next generation sequencing is a powerful tool to identify quantitative trait loci (QTL). The impact of the size of the study population and the percentage of extreme genotypes analysed have already been assessed. But a good comparison of statistical approaches designed to identify QTL regions using next generation sequencing (NGS) technologies for BSA is still lacking.

RESULTS

We developed an R code to simulate QTLs in bulks of F2 contrasted lines. We simulated a range of recombination rates based on estimations using different crop species. The simulations were used to benchmark the ability of statistical methods identify the exact location of true QTLs. A single QTL led to a shift in allele frequency across a large fraction of the chromosome for plant species with low recombination rate. The smoothed version of all statistics performed best notably the smoothed Euclidean distance-based statistics was always found to be more accurate in identifying the location of QTLs. We propose a simulation approach to build confidence interval statistics for the detection of QTLs.

CONCLUSION

We highlight the statistical methods best suited for BSA studies using NGS technologies in crops even when recombination rate is low. We also provide simulation codes to build confidence intervals and to assess the impact of recombination for application to other studies. This computational study will help select NGS-based BSA statistics that are useful to the broad scientific community.

摘要

背景

结合下一代测序的大量分离分析(BSA)是鉴定数量性状基因座(QTL)的有力工具。已经评估了研究群体的大小和分析的极端基因型的百分比的影响。但是,仍然缺乏使用下一代测序(NGS)技术用于 BSA 的 QTL 区域鉴定的统计方法的良好比较。

结果

我们开发了一种 R 代码,用于模拟 F2 对比系群体中的 QTL。我们根据使用不同作物物种的估计值模拟了一系列重组率。这些模拟用于基准测试统计方法识别真实 QTL 的确切位置的能力。对于重组率较低的植物物种,单个 QTL 导致整个染色体上的等位基因频率发生变化。所有统计数据的平滑版本表现最佳,特别是平滑的基于欧几里得距离的统计数据在识别 QTL 位置方面始终更准确。我们提出了一种模拟方法来构建 QTL 检测的置信区间统计数据。

结论

即使重组率较低,我们也强调了使用 NGS 技术进行 BSA 研究的最合适的统计方法。我们还提供了模拟代码来构建置信区间,并评估重组对其他研究应用的影响。这项计算研究将有助于选择对广大科学界有用的基于 NGS 的 BSA 统计数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d2/9258084/ed26b73729b6/12864_2022_8718_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验