Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
Methods Mol Biol. 2022;2533:99-126. doi: 10.1007/978-1-0716-2501-9_7.
The process of eukaryotic ribosome assembly stretches across the nucleolus, the nucleoplasm and the cytoplasm, and therefore relies on efficient nucleocytoplasmic transport. In yeast, the import machinery delivers ~140,000 ribosomal proteins every minute to the nucleus for ribosome assembly. At the same time, the export machinery facilitates translocation of ~2000 pre-ribosomal particles every minute through ~200 nuclear pore complexes (NPC) into the cytoplasm. Eukaryotic ribosome assembly also requires >200 conserved assembly factors, which transiently associate with pre-ribosomal particles. Their site(s) of action on maturing pre-ribosomes are beginning to be elucidated. In this chapter, we outline protocols that enable rapid biochemical isolation of pre-ribosomal particles for single particle cryo-electron microscopy (cryo-EM) and in vitro reconstitution of nuclear transport processes. We discuss cell-biological and genetic approaches to investigate how the ribosome assembly and the nucleocytoplasmic transport machineries collaborate to produce functional ribosomes.
真核核糖体组装的过程横跨核仁、核质和细胞质,因此依赖于有效的核质转运。在酵母中,进口机制每分钟将约 140000 个核糖体蛋白输送到细胞核中进行核糖体组装。同时,出口机制促进每分钟约 2000 个前核糖体颗粒通过约 200 个核孔复合物 (NPC) 转运到细胞质中。真核核糖体组装还需要 >200 个保守的组装因子,这些因子与前核糖体颗粒短暂结合。它们在前核糖体成熟过程中的作用位点开始被阐明。在本章中,我们概述了用于快速生化分离前核糖体颗粒的方案,以便进行单颗粒冷冻电子显微镜 (cryo-EM) 和核转运过程的体外重建。我们讨论了细胞生物学和遗传学方法,以研究核糖体组装和核质转运机制如何协同产生功能性核糖体。