Suppr超能文献

基于深度学习的自动新鲜肋骨骨折检测与定位系统。

An automatic fresh rib fracture detection and positioning system using deep learning.

机构信息

Department of Radiology, Fushun Central Hospital of Liaoning Province, Fushun, Liaoning Province, China.

Deepwise Artificial Intelligence (AI) Lab, Deepwise Inc., Beijing, China.

出版信息

Br J Radiol. 2023 Jun 1;96(1146):20221006. doi: 10.1259/bjr.20221006. Epub 2023 Apr 17.

Abstract

OBJECTIVE

To evaluate the performance and robustness of a deep learning-based automatic fresh rib fracture detection and positioning system (FRF-DPS).

METHODS

CT scans of 18,172 participants admitted to eight hospitals from June 2009 to March 2019 were retrospectively collected. Patients were divided into development set (14,241), multicenter internal test set (1612), and external test set (2319). In internal test set, sensitivity, false positives (FPs) and specificity were used to assess fresh rib fracture detection performance at the lesion- and examination-levels. In external test set, the performance of detecting fresh rib fractures by radiologist and FRF-DPS were evaluated at lesion, rib, and examination levels. Additionally, the accuracy of FRF-DPS in rib positioning was investigated by the ground-truth labeling.

RESULTS

In multicenter internal test set, FRF-DPS showed excellent performance at the lesion- (sensitivity: 0.933 [95%CI, 0.916-0.949], FPs: 0.50 [95%CI, 0.397-0.583]) and examination-level. In external test set, the sensitivity and FPs at the lesion-level of FRF-DPS (0.909 [95%CI, 0.883-0.926], < 0.001; 0.379 [95%CI, 0.303-0.422], = 0.001) were better than the radiologist (0.789 [95%CI, 0.766-0.807]; 0.496 [95%CI, 0.383-0.571]), so were the rib- and patient-levels. In subgroup analysis of CT parameters, FRF-DPS were robust (0.894-0.927). Finally, FRF-DPS(0.997 [95%CI, 0.992-1.000], < 0.001) is more accurate than radiologist (0.981 [95%CI, 0.969-0.996]) in rib positioning and takes 20 times less time.

CONCLUSION

FRF-DPS achieved high detection rate of fresh rib fractures with low FP values, and precise positioning of ribs, thus can be used in clinical practice to improve the detection rate and work efficiency.

ADVANCES IN KNOWLEDGE

We developed the FRF-DPS system which can detect fresh rib fractures and rib position, and evaluated by a large amount of multicenter data.

摘要

目的

评估一种基于深度学习的自动检测和定位新鲜肋骨骨折的系统(FRF-DPS)的性能和稳健性。

方法

回顾性收集了 2009 年 6 月至 2019 年 3 月期间 8 家医院收治的 18172 名患者的 CT 扫描。患者被分为开发集(14241 例)、多中心内部测试集(1612 例)和外部测试集(2319 例)。在内部测试集中,在病变和检查水平上使用灵敏度、假阳性(FP)和特异性来评估新鲜肋骨骨折的检测性能。在外部测试集中,评估了放射科医生和 FRF-DPS 在病变、肋骨和检查水平上检测新鲜肋骨骨折的性能。此外,通过真实标签研究了 FRF-DPS 肋骨定位的准确性。

结果

在多中心内部测试集中,FRF-DPS 在病变(灵敏度:0.933[95%CI,0.916-0.949],FP:0.50[95%CI,0.397-0.583])和检查水平上表现出优异的性能。在外部测试集中,FRF-DPS 在病变水平的灵敏度和 FP(0.909[95%CI,0.883-0.926], < 0.001;0.379[95%CI,0.303-0.422], = 0.001)优于放射科医生(0.789[95%CI,0.766-0.807];0.496[95%CI,0.383-0.571]),肋骨和患者水平也是如此。在 CT 参数的亚组分析中,FRF-DPS 表现稳健(0.894-0.927)。最后,FRF-DPS(0.997[95%CI,0.992-1.000], < 0.001)比放射科医生(0.981[95%CI,0.969-0.996])在肋骨定位方面更准确,且耗时更少(20 倍)。

结论

FRF-DPS 能够以较低的 FP 值实现新鲜肋骨骨折的高检出率,并实现肋骨的精确定位,因此可用于临床实践,以提高检出率和工作效率。

知识进展

我们开发了 FRF-DPS 系统,可检测新鲜肋骨骨折和肋骨位置,并通过大量多中心数据进行评估。

相似文献

引用本文的文献

本文引用的文献

6
RiFNet: Automated rib fracture detection in postmortem computed tomography.RiFNet:死后计算机断层扫描中的自动肋骨骨折检测
Forensic Sci Med Pathol. 2022 Mar;18(1):20-29. doi: 10.1007/s12024-021-00431-8. Epub 2021 Oct 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验