Suppr超能文献

肝癌组织和液体活检的 DNA 甲基化指纹图谱。

DNA methylation fingerprint of hepatocellular carcinoma from tissue and liquid biopsies.

机构信息

Ophiomics, Pólo Tecnológico de 8, R. Cupertino de Miranda 9, 1600-513, Lisbon, Portugal.

INESC-ID, 1000-029, Lisbon, Portugal.

出版信息

Sci Rep. 2022 Jul 7;12(1):11512. doi: 10.1038/s41598-022-15058-0.

Abstract

Hepatocellular carcinoma (HCC) is amongst the cancers with highest mortality rates and is the most common malignancy of the liver. Early detection is vital to provide the best treatment possible and liquid biopsies combined with analysis of circulating tumour DNA methylation show great promise as a non-invasive approach for early cancer diagnosis and monitoring with low false negative rates. To identify reliable diagnostic biomarkers of early HCC, we performed a systematic analysis of multiple hepatocellular studies and datasets comprising > 1500 genome-wide DNA methylation arrays, to define a methylation signature predictive of HCC in both tissue and cell-free DNA liquid biopsy samples. Our machine learning pipeline identified differentially methylated regions in HCC, some associated with transcriptional repression of genes related with cancer progression, that benchmarked positively against independent methylation signatures. Combining our signature of 38 DNA methylation regions, we derived a HCC detection score which confirmed the utility of our approach by identifying in an independent dataset 96% of HCC tissue samples with a precision of 98%, and most importantly successfully separated cfDNA of tumour samples from healthy controls. Notably, our risk score could identify cell-free DNA samples from patients with other tumours, including colorectal cancer. Taken together, we propose a comprehensive HCC DNA methylation fingerprint and an associated risk score for detection of HCC from tissue and liquid biopsies.

摘要

肝细胞癌 (HCC) 是死亡率最高的癌症之一,也是肝脏最常见的恶性肿瘤。早期发现对于提供最佳治疗至关重要,液体活检结合循环肿瘤 DNA 甲基化分析显示出作为一种非侵入性早期癌症诊断和监测方法的巨大潜力,具有低假阴性率。为了确定早期 HCC 的可靠诊断生物标志物,我们对多个肝细胞研究和包含超过 1500 个全基因组 DNA 甲基化阵列的数据集进行了系统分析,以定义可预测组织和游离 DNA 液体活检样本中 HCC 的甲基化特征。我们的机器学习管道在 HCC 中识别了差异甲基化区域,其中一些与癌症进展相关基因的转录抑制有关,与独立的甲基化特征基准一致。我们将 38 个 DNA 甲基化区域的特征组合起来,得出了 HCC 检测评分,该评分通过在独立数据集的 96%的 HCC 组织样本中以 98%的精度识别来确认我们方法的实用性,并且最重要的是成功地将肿瘤样本的游离 DNA 与健康对照区分开来。值得注意的是,我们的风险评分可以识别来自其他肿瘤(包括结直肠癌)患者的游离 DNA 样本。总之,我们提出了一种全面的 HCC DNA 甲基化指纹和相关的风险评分,用于从组织和液体活检中检测 HCC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c1e/9262906/ccd1ee199402/41598_2022_15058_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验