Department of Radiology, Division of Neuroradiology, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Pediatr Radiol. 2022 Dec;52(13):2595-2609. doi: 10.1007/s00247-022-05411-w. Epub 2022 Jul 8.
Medulloblastoma, a high-grade embryonal tumor, is the most common primary brain malignancy in the pediatric population. Molecular medulloblastoma groups have documented clinically and biologically relevant characteristics. Several authors have attempted to differentiate medulloblastoma molecular groups and histology variants using diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) maps. However, literature on the use of ADC histogram analysis in medulloblastomas is still scarce.
This study presents data from a sizable group of pediatric patients with medulloblastoma from a single institution to determine the performance of ADC histogram metrics for differentiating medulloblastoma variants and groups based on both histological and molecular features.
In this retrospective study, we evaluated the distribution of absolute and normalized ADC values of medulloblastomas. Tumors were manually segmented and diffusivity metrics calculated on a pixel-by-pixel basis. We calculated a variety of first-order histogram metrics from the ADC maps, including entropy, minimum, 10th percentile, 90th percentile, maximum, mean, median, skewness and kurtosis, to differentiate molecular and histological variants. ADC values of the tumors were also normalized to the bilateral cerebellar cortex and thalami. We used the Kruskal-Wallis and Mann-Whitney U tests to evaluate differences between the groups. We carried out receiver operating characteristic (ROC) curve analysis to evaluate the areas under the curves and to determine the cut-off values for differentiating tumor groups.
We found 65 children with confirmed histopathological diagnosis of medulloblastoma. Mean age was 8.3 ± 5.8 years, and 60% (n = 39) were male. One child was excluded because histopathological variant could not be determined. In terms of medulloblastoma variants, tumors were classified as classic (n = 47), desmoplastic/nodular (n = 9), large/cell anaplastic (n = 6) or as having extensive nodularity (n = 2). Seven other children were excluded from the study because of incomplete imaging or equivocal molecular diagnosis. Regarding medulloblastoma molecular groups, there were: wingless (WNT) group (n = 7), sonic hedgehog (SHH) group (n = 14) and non-WNT/non-SHH (n = 36). Our results showed significant differences among the molecular groups in terms of the median (P = 0.002), mean (P = 0.003) and 90th percentile (P = 0.002) ADC histogram metrics. No significant differences among the various medulloblastoma histological variants were found.
ADC histogram analysis can be implemented as a complementary tool in the preoperative evaluation of medulloblastoma in children. This technique can provide valuable information for differentiating among medulloblastoma molecular groups. ADC histogram metrics can help predict medulloblastoma molecular classification preoperatively.
髓母细胞瘤是一种高级胚胎肿瘤,是儿童中最常见的原发性脑恶性肿瘤。分子髓母细胞瘤组记录了具有临床和生物学意义的特征。几位作者试图使用弥散加权成像(DWI)和表观弥散系数(ADC)图来区分髓母细胞瘤的分子组和组织学变体。然而,关于 ADC 直方图分析在髓母细胞瘤中的应用的文献仍然很少。
本研究提供了来自单一机构的大量儿童髓母细胞瘤患者的数据,以确定 ADC 直方图指标在基于组织学和分子特征的情况下区分髓母细胞瘤变体和组的性能。
在这项回顾性研究中,我们评估了髓母细胞瘤的绝对和归一化 ADC 值的分布。肿瘤手动分割,在像素基础上计算扩散度指标。我们从 ADC 图中计算了各种一阶直方图指标,包括熵、最小值、第 10 百分位、第 90 百分位、最大值、平均值、中位数、偏度和峰度,以区分分子和组织学变体。肿瘤的 ADC 值也被归一化为双侧小脑皮质和丘脑。我们使用 Kruskal-Wallis 和 Mann-Whitney U 检验来评估组间的差异。我们进行了接收器操作特征(ROC)曲线分析,以评估曲线下面积,并确定区分肿瘤组的截止值。
我们发现 65 名儿童的组织病理学诊断为髓母细胞瘤。平均年龄为 8.3±5.8 岁,60%(n=39)为男性。由于不能确定组织病理学变体,有 1 名儿童被排除在外。在髓母细胞瘤变体方面,肿瘤被分为经典型(n=47)、促结缔组织增生型/结节型(n=9)、大细胞间变型/肉瘤型(n=6)或广泛结节型(n=2)。另有 7 名儿童因成像不完整或分子诊断不确定而被排除在研究之外。关于髓母细胞瘤分子组,有:无翅型(WNT)组(n=7)、声波刺猬型(SHH)组(n=14)和非 WNT/非 SHH 组(n=36)。我们的结果显示,分子组之间在中位数(P=0.002)、平均值(P=0.003)和 90 百分位(P=0.002)ADC 直方图指标方面存在显著差异。各种髓母细胞瘤组织学变体之间没有发现显著差异。
ADC 直方图分析可以作为儿童髓母细胞瘤术前评估的补充工具。该技术可为区分髓母细胞瘤的分子组提供有价值的信息。ADC 直方图指标可以帮助预测髓母细胞瘤的分子分类。