Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China.
Diabetologia. 2022 Sep;65(9):1424-1435. doi: 10.1007/s00125-022-05748-9. Epub 2022 Jul 8.
AIMS/HYPOTHESIS: Data-driven diabetes subgroups have shown distinct clinical characteristics and disease progression, although there is a lack of evidence that this information can guide clinical decisions. We aimed to investigate whether diabetes subgroups, identified by data-driven clustering or supervised machine learning methods, respond differently to canagliflozin.
We pooled data from five randomised, double-blinded clinical trials of canagliflozin at an individual level. We applied the coordinates from the All New Diabetics in Scania (ANDIS) study to form four subgroups: mild age-related diabetes (MARD); severe insulin-deficient diabetes (SIDD); mild obesity-related diabetes (MOD) and severe insulin-resistant diabetes (SIRD). Machine learning models for HbA lowering (ML-A1C) and albuminuria progression (ML-ACR) were developed. The primary efficacy endpoint was reduction in HbA at 52 weeks. Concordance of a model was defined as the difference between predicted HbA and actual HbA decline less than 3.28 mmol/mol (0.3%).
The decline in HbA resulting from treatment was different among the four diabetes clusters (p=0.004). In MOD, canagliflozin showed a robust glucose-lowering effect at week 52, compared with other drugs, with least-squares mean of HbA decline [95% CI] being 6.6 mmol/mol (4.1, 9.2) (0.61% [0.38, 0.84]) for sitagliptin, 7.1 mmol/mol (4.7, 9.5) (0.65% [0.43, 0.87]) for glimepiride, and 9.8 mmol/mol (9.0, 10.5) (0.90% [0.83, 0.96]) for canagliflozin. This superiority persisted until 104 weeks. The proportion of individuals who achieved HbA <53 mmol/mol (<7.0%) was highest in sitagliptin-treated individuals with MARD but was similar among drugs in individuals with MOD. The ML-A1C model and the cluster algorithm showed a similar concordance rate in predicting HbA lowering (31.5% vs 31.4%, p=0.996). Individuals were divided into high-risk and low-risk groups using ML-ACR model according to their predicted progression risk for albuminuria. The effect of canagliflozin vs placebo on albuminuria progression differed significantly between the high-risk (HR 0.67 [95% CI 0.57, 0.80]) and low-risk groups (HR 0.91 [0.75, 1.11]) (p=0.016).
CONCLUSIONS/INTERPRETATION: Data-driven clusters of individuals with diabetes showed different responses to canagliflozin in glucose lowering but not renal outcome prevention. Canagliflozin reduced the risk of albumin progression in high-risk individuals identified by supervised machine learning. Further studies with larger sample sizes for external replication and subtype-specific clinical trials are necessary to determine the clinical utility of these stratification strategies in sodium-glucose cotransporter 2 inhibitor treatment.
The application for the clinical trial data source is available on the YODA website ( http://yoda.yale.edu/ ).
目的/假设:数据驱动的糖尿病亚组表现出明显的临床特征和疾病进展,尽管缺乏证据表明这些信息可以指导临床决策。我们旨在研究通过数据驱动的聚类或监督机器学习方法识别的糖尿病亚组是否对卡格列净有不同的反应。
我们对卡格列净的五项随机、双盲临床试验的数据进行了个体水平的汇总。我们应用了来自斯堪的纳维亚全新糖尿病(ANDIS)研究的坐标,形成了四个亚组:轻度年龄相关糖尿病(MARD);严重胰岛素缺乏性糖尿病(SIDD);轻度肥胖相关糖尿病(MOD)和严重胰岛素抵抗性糖尿病(SIRD)。建立了用于降低糖化血红蛋白(ML-A1C)和白蛋白尿进展(ML-ACR)的机器学习模型。主要疗效终点为 52 周时糖化血红蛋白的降低。模型的一致性定义为预测糖化血红蛋白与实际糖化血红蛋白下降之间的差异小于 3.28mmol/mol(0.3%)。
四种糖尿病亚组之间治疗导致的糖化血红蛋白下降不同(p=0.004)。在 MOD 中,与其他药物相比,卡格列净在第 52 周时显示出强大的降糖作用,糖化血红蛋白下降的最小二乘均值[95%置信区间]为 6.6mmol/mol(4.1,9.2)(0.61%[0.38,0.84]),西他列汀为 7.1mmol/mol(4.7,9.5)(0.65%[0.43,0.87]),格列美脲为 9.8mmol/mol(9.0,10.5)(0.90%[0.83,0.96]),卡格列净为 9.8mmol/mol(9.0,10.5)(0.90%[0.83,0.96])。这种优势持续到 104 周。在 MARD 患者中,接受西他列汀治疗的患者达到糖化血红蛋白<53mmol/mol(<7.0%)的比例最高,但在 MOD 患者中,不同药物之间的比例相似。ML-A1C 模型和聚类算法在预测糖化血红蛋白降低方面具有相似的一致性(31.5%vs31.4%,p=0.996)。根据预测的白蛋白尿进展风险,使用 ML-ACR 模型将个体分为高风险和低风险组。卡格列净与安慰剂相比,在白蛋白尿进展方面的疗效在高风险(HR0.67[95%CI0.57,0.80])和低风险(HR0.91[0.75,1.11])组之间有显著差异(p=0.016)。
结论/解释:糖尿病患者的基于数据的亚组在血糖降低方面对卡格列净的反应不同,但在预防肾脏结局方面没有差异。卡格列净降低了通过监督机器学习确定的高风险个体的白蛋白进展风险。需要进一步的大型样本量研究进行外部验证和亚组特异性临床试验,以确定这些分层策略在钠-葡萄糖共转运蛋白 2 抑制剂治疗中的临床应用价值。
临床试验数据源的申请可在 YODA 网站(http://yoda.yale.edu/)上获得。