Health Economics & Outcomes Research, Internal Medicine, Pfizer, Surrey, United Kingdom.
University Heart & Vascular Center Hamburg Eppendorf, Hamburg, Germany.
PLoS One. 2022 Jul 8;17(7):e0269867. doi: 10.1371/journal.pone.0269867. eCollection 2022.
Atrial fibrillation (AF) burden on patients and healthcare systems warrants innovative strategies for screening asymptomatic individuals.
We sought to externally validate a predictive model originally developed in a German population to detect unidentified incident AF utilising real-world primary healthcare databases from countries in Europe and Australia.
This retrospective cohort study used anonymized, longitudinal patient data from 5 country-level primary care databases, including Australia, Belgium, France, Germany, and the UK. The study eligibility included adult patients (≥45 years) with either an AF diagnosis (cases) or no diagnosis (controls) who had continuous enrolment in the respective database prior to the study period. Logistic regression was fitted to a binary response (yes/no) for AF diagnosis using pre-determined risk factors.
AF patients were from Germany (n = 63,562), the UK (n = 42,652), France (n = 7,213), Australia (n = 2,753), and Belgium (n = 1,371). Cases were more likely to have hypertension or other cardiac conditions than controls in all validation datasets compared to the model development data. The area under the receiver operating characteristic (ROC) curve in the validation datasets ranged from 0.79 (Belgium) to 0.84 (Germany), comparable to the German study model, which had an area under the curve of 0.83. Most validation sets reported similar specificity at approximately 80% sensitivity, ranging from 67% (France) to 71% (United Kingdom). The positive predictive value (PPV) ranged from 2% (Belgium) to 16% (Germany), and the number needed to be screened was 50 in Belgium and 6 in Germany. The prevalence of AF varied widely between these datasets, which may be related to different coding practices. Low prevalence affected PPV, but not sensitivity, specificity, and ROC curves.
AF risk prediction algorithms offer targeted ways to identify patients using electronic health records, which could improve screening number and the cost-effectiveness of AF screening if implemented in clinical practice.
房颤(AF)给患者和医疗系统带来的负担需要创新的策略来筛查无症状个体。
我们旨在利用来自欧洲和澳大利亚国家的真实世界初级保健数据库,对最初在德国人群中开发的用于检测未确诊的 AF 的预测模型进行外部验证。
这项回顾性队列研究使用了来自 5 个国家一级初级保健数据库(包括澳大利亚、比利时、法国、德国和英国)的匿名、纵向患者数据。研究纳入标准包括在研究期间之前连续纳入各自数据库的年龄≥45 岁的成年患者(病例)或无诊断(对照)的患者。使用预先确定的风险因素,对 AF 诊断的二元反应(是/否)进行逻辑回归拟合。
AF 患者来自德国(n=63562)、英国(n=42652)、法国(n=7213)、澳大利亚(n=2753)和比利时(n=1371)。与模型开发数据相比,所有验证数据集的病例比对照更有可能患有高血压或其他心脏疾病。验证数据集的接收者操作特征(ROC)曲线下面积范围为 0.79(比利时)至 0.84(德国),与德国研究模型的曲线下面积 0.83相当。大多数验证数据集报告了相似的特异性,约为 80%的敏感性,范围从 67%(法国)到 71%(英国)。阳性预测值(PPV)范围从 2%(比利时)到 16%(德国),筛查人数在比利时为 50,在德国为 6。这些数据集之间的 AF 患病率差异很大,这可能与不同的编码实践有关。低患病率影响 PPV,但不影响敏感性、特异性和 ROC 曲线。
AF 风险预测算法提供了使用电子健康记录识别患者的针对性方法,如果在临床实践中实施,可能会提高筛查数量和 AF 筛查的成本效益。