Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy.
Department of Humanities, Università degli Studi di Macerata, Macerata, Italy.
Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1753-1761. doi: 10.1007/s11548-024-03219-7. Epub 2024 Jul 8.
Accurate IVD segmentation is crucial for diagnosing and treating spinal conditions. Traditional deep learning methods depend on extensive, annotated datasets, which are hard to acquire. This research proposes an intensity-based self-supervised domain adaptation, using unlabeled multi-domain data to reduce reliance on large annotated datasets.
The study introduces an innovative method using intensity-based self-supervised learning for IVD segmentation in MRI scans. This approach is particularly suited for IVD segmentations due to its ability to effectively capture the subtle intensity variations that are characteristic of spinal structures. The model, a dual-task system, simultaneously segments IVDs and predicts intensity transformations. This intensity-focused method has the advantages of being easy to train and computationally light, making it highly practical in diverse clinical settings. Trained on unlabeled data from multiple domains, the model learns domain-invariant features, adeptly handling intensity variations across different MRI devices and protocols.
Testing on three public datasets showed that this model outperforms baseline models trained on single-domain data. It handles domain shifts and achieves higher accuracy in IVD segmentation.
This study demonstrates the potential of intensity-based self-supervised domain adaptation for IVD segmentation. It suggests new directions for research in enhancing generalizability across datasets with domain shifts, which can be applied to other medical imaging fields.
准确的体外诊断(IVD)分割对于诊断和治疗脊柱疾病至关重要。传统的深度学习方法依赖于大量的、经过注释的数据集,而这些数据集很难获取。本研究提出了一种基于强度的自我监督领域自适应方法,使用未标记的多领域数据来减少对大型注释数据集的依赖。
本研究提出了一种使用基于强度的自我监督学习的新方法,用于 MRI 扫描中的 IVD 分割。由于该方法能够有效地捕捉到脊柱结构特征的细微强度变化,因此特别适用于 IVD 分割。该模型是一个双重任务系统,同时分割 IVD 并预测强度变换。这种以强度为重点的方法具有易于训练和计算量轻的优点,使其在各种临床环境中非常实用。该模型在来自多个领域的未标记数据上进行训练,学习到域不变特征,能够熟练地处理来自不同 MRI 设备和协议的强度变化。
在三个公共数据集上的测试表明,该模型优于在单领域数据上训练的基线模型。它能够处理域转移并实现更高的 IVD 分割准确性。
本研究表明了基于强度的自我监督领域自适应方法在 IVD 分割中的潜力。它为研究在存在数据域转移的情况下增强数据集的泛化能力提供了新的方向,这可应用于其他医学成像领域。