Center for Neural Science, New York University, New York, NY, USA; email:
Annu Rev Neurosci. 2022 Jul 8;45:533-560. doi: 10.1146/annurev-neuro-110920-035434.
The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.
大脑新皮层是一个具有许多相互作用区域的复杂神经生物学系统。这些区域如何协同工作以支持灵活的行为和认知,这已经越来越能够进行严格的研究。在这里,我回顾了关于多区域大脑皮层运作方式的最新实验和理论工作。这些研究揭示了几个关于大脑新皮层区域间连接的一般原则,即跨皮质区域的生物特性的低维宏观梯度,以及信息处理的时间尺度层次结构。理论工作提出了关于皮质层次中前馈和反馈路径上的差异兴奋和抑制的可测试预测。此外,分布式工作记忆和简单决策建模提出了一个新的数学概念,称为空间分岔,该概念可能解释了具有典型电路组织但具有生物异质性梯度的不同大脑区域如何能够在模块化组织的大脑中发挥其各自的(例如,感觉编码与执行控制)功能。