Wang Xiao-Jing, Jiang Junjie, Zeraati Roxana, Pereira-Obilinovic Ulises, Battista Aldo, Vezoli Julien, Kennedy Henry
Center for Neural Science, New York University, 4 Washington Place, New York 10003, USA.
Present address: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, Shaanxi, P. R. China.
bioRxiv. 2024 Dec 21:2023.06.04.543639. doi: 10.1101/2023.06.04.543639.
How does functional modularity emerge in a cortex composed of repeats of a canonical local circuit? Focusing on distributed working memory, we show that a rigorous description of bifurcation in space describes the emergence of modularity. A connectome-based model of monkey cortex displays bifurcation in space during decision-making and working memory, demonstrating this new concept's generality. In a generative model and multi-regional cortex models of both macaque monkey and mouse, we found an inverted-V-shaped profile of neuronal timescales across the cortical hierarchy during working memory, providing an experimentally testable prediction of modularity. The cortex displays simultaneously many bifurcations in space, so that the corresponding modules could potentially subserve distinct internal mental processes. Therefore, a distributed process subserves the brain's functional specificity. We propose that bifurcation in space, resulting from connectivity and macroscopic gradients of neurobiological properties across the cortex, represents a fundamental principle for understanding the brain's modular organization.
在由典型局部回路重复组成的皮质中,功能模块性是如何出现的?聚焦于分布式工作记忆,我们表明,对空间中分支的严格描述解释了模块性的出现。基于连接组的猴子皮质模型在决策和工作记忆过程中显示出空间分支,证明了这一新概念的普遍性。在猕猴和小鼠的生成模型以及多区域皮质模型中,我们发现工作记忆期间跨皮质层级的神经元时间尺度呈倒V形分布,这为模块性提供了一个可通过实验检验的预测。皮质在空间中同时显示出许多分支,因此相应的模块可能潜在地服务于不同的内部心理过程。所以,一个分布式过程服务于大脑的功能特异性。我们提出,由皮质中神经生物学特性的连接性和宏观梯度导致的空间分支,代表了理解大脑模块化组织的一个基本原理。